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Paul Erdős and Egyptian Fractions

R. L. GRAHAM

One of Paul Erdős’ earliest mathematical interests was the study of so-called
Egyptian fractions, that is, finite sums of distinct fractions having numerator 1. In
this note we survey various results in this subject, many of which were motivated
by Erdős’ problems and conjectures on such sums. This note complements the
excellent treatment of this topic given by A. Schinzel in 2002.1

1. Introduction

The Rhind Papyrus of Ahmes [47] (see also [34, 63]) is one of the oldest
known mathematical manuscripts, dating from around 1650 B.C. It contains
among other things, a list of expansions of fractions of the form 2

n into sums
of distinct unit fractions, that is, fractions with numerator 1. Examples
of such expansions are 2

35 = 1
30 + 1

42 and 2
63 = 1

56 + 1
72 . More generally, one

can consider expansions of more general rational numbers into sums of unit
fractions with distinct denominators such as:

10

73
=

1

11
+

1

22
+

1

1606
,

67

2012
=

1

31
+

1

960
+

1

2138469
+

1

10670447077440
,

and

1 =
1

6
+

1

7
+

1

8
+

1

9
+

1

10
+

1

14
+

1

15
+

1

18
+

1

20
+

1

24
+

1

28
+

1

30
.

There are various explanations as to why the Egyptians chose to use such
representations (for example, see [63]) but perhaps the most compelling is
that given to the author some years ago by the legendary mathematician

1See [52].
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2 R. L. Graham

André Weil [62]. When I asked him why he thought the Egyptians used this
method for representing fractions, he thought for a moment and then said,
“It is easy to explain. They took a wrong turn!”.

As is well known, Erdős’ first major result (and first paper) was his
beautiful 1932 proof [25] of Bertrand’s postulate, namely that for any posi-
tive integer n > 1, there is always a prime between n and 2n.2 In particular,
Erdős’ proof was based in part on an analysis of the prime divisors of the
binomial coefficients

(
2n
n

)
. What is perhaps less well known is that Erdős’

second paper [26], also published in 1932, dealt with Egyptian fractions. In
it, he generalizes an elementary result of Kürschák [41] by showing that for
any choice of positive integers a, d and n, the sum

∑n
k=1

1
a+kd is never an

integer.3

The next paper of Erdős dealing with Egyptian fractions was his 1945
paper with I. Niven [29]. In that paper, they showed among other things
that no two partial sums of the harmonic series can be equal, i.e.,

∑s
i=r i

−1 =∑u
i=t i

−1 implies r = t and s = u. In that paper they also showed that for
only finitely many n can one or more of the elementary symmetric functions
of 1, 12 , . . . ,

1
n be an integer. Very recently, this was strengthened in a paper

of Chen and Tang [17]. In that paper, they showed that the only pairs (k, n)
for which the kth elementary function S(k, n) of 1, 12 , . . . ,

1
n is an integer is

S(1, 1) = 1 and S(2, 3) = (1)(12)+ (1)(13)+ (12)(
1
3) = 1. Thus, for n ≥ 4,

none of the elementary functions are integers.

Perhaps the paper of Erdős dealing with Egyptian fractions which has
had the greatest impact was his 1950 paper [27]. In this seminal paper,
he considers the quantity N(a, b), defined for integers 1 ≤ a < b to be least
value n such that the equation a

b =
∑n

k=1
1
xk

has a solution with 0 < x1 <

x2 < . . . < xn. In particular, he shows that N(b) = max1≤a≤bN(a, b) satis-

fies log log b ≪ N(b) ≪ log b
log log b , sharpening an earlier result of deBruijn and

others. It is conjectured in [27] that N(b) ≪ log log b. The best result in
this direction at present is due to Vose [59] who showed that N(b) ≪

√
log b.

2This was memoralized by Leo Moser’s limerick: “Chebyshev said it and I’ll say it
again. There is always a prime between n and 2n.”

3Interestingly, Erdős states in the German abstract of that paper:“Der Grundgedanke
des Beweises besteht darin, dass ein Glied a+ kd angegeben wird, welches durch eine
höhere Potenz einer Primzahl teilbar ist, als die übrigen Glieder. Dies ergibt sich aus der
Analyse der Primteiler der Ausdrücke of (a+d)(a+2d)...(a+nd)

n!
and

(
2n
n

)
” (The basic idea

of the proof is that some term a+ kd is divisible by a higher power of some prime than
any other terms. This follows from the analysis of the prime divisors of the expressions
(a+d)(a+2d)...(a+nd)

n!
and

(
2n
n

)
).
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Paul Erdős and Egyptian Fractions 3

It is also in this paper that the celebrated Erdős-Straus “ 4
n conjecture”

occurs, namely that N(4, b) ≤ 3 for every b > 2. This will be the subject of
the next section.

2. The Erdős-Straus Conjecture

The first proof that any positive rational a
b has an Egyptian fraction repre-

sentation:

a

b
=

1

x1
+

1

x2
+ . . .+

1

xn
, 1 ≤ x1 < x2 < . . . < xn,(1)

was given by Fibonacci (= Leonardo Pisano) in 1202 [32]. His method was
to apply the greedy algorithm, namely always subtract the largest possible
unit fraction from the current remainder so that the result is nonnegative.
While this ordinarily does not produce the shortest possible representation,
or the one with smallest maximum denominator, it does terminate in finitely
many steps since eventually the numerator of the reduced remainder must
strictly decrease at each step. In particular, for fractions of the form 2

n for

n > 1, the greedy algorithm only needs 2 steps, and for 3
n , it only needs

3 steps. While this algorithm would guarantee that for the fractions 4
n , a

representation with 4 unit fractions is guaranteed, Erdős and Straus [27]
conjectured that in fact such a fraction always had an Egyptian fraction
expansion with at most 3 terms. It is easy to see that in order to prove
this, it is enough to show that it holds for prime values of n. There have
been many papers published studying various aspects of this problem (for
example, see [1, 40, 48, 61, 60] and especially the references in [39]). For
example, it is known that if the conjectures fails for some value n then n
must be congruent to one of 12, 112, 132, 172, 192 or 232 (mod 840). From
a computational perspective, the conjecture has been verified for n ≤ 1014

[57]. One of the most recent treatments is in a long paper of Elsholtz and
Tao [24] (extending earlier work of Elsholtz [23]). Among their many results
are the following. Let f(n) denote the number of different solutions to the
equation

4

n
=

1

x1
+

1

x2
+

1

x3
(2)

where here the xi are not assumed to be distinct or ordered by size. It is
easy to see that the Erdős-Straus conjecture is that f(n) > 0 for n > 1. In
[24], it is shown that :
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4 R. L. Graham

(i) N log2N ≪
∑
q≤N

f(q) ≪ N log2N log logN where q ranges over primes;

(ii) For any prime q,

f(q) ≪ q
3
5
+O

(
1

log log q

)
.

(iii) For infinitely many n, one has

f(n) ≥ exp

(
(log 3 + o(1))

log n

log log n

)
.

In particular, it follows from this that there are relatively few solutions
to (2) for most n. However, Vaughan [58] has shown that the number of

n ≤ x for which the Erdős-Straus conjectures fails is O(x exp(−c(log x)
2
3 )),

c > 0. As of this writing, the original conjecture of Erdős and Straus is still
unresolved.4

Motivated by the Erdős-Straus conjecture, Sierpiński [55] made the
analogous conjecture5 for the fractions 5

n , namely, that for all n ≥ 5, there
is a decomposition:

5

n
=

1

x1
+

1

x2
+

1

x3
, 1 ≤ x1 < x2 < x3.

This has been verified for 5 ≤ n ≤ 1057438801 (see [39]). More generally,
Schinzel (also in [55]) conjectured that for any fraction a

n , one can express
it as:

a

n
=

1

x1
+

1

x2
+

1

x3
, 1 ≤ x1 < x2 < x3,

provided n > n0(a). Needless to say, these conjectures are currently still
unsettled.

4As a historical note, this conjecture also occurred around the same time in a paper
of Obláth [46] (submitted for publication in 1948) in which the constraint that the xi be
distinct is relaxed.

5It is curious why Erdős and Straus didn’t make this conjecture in [27] as well.
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Paul Erdős and Egyptian Fractions 5

3. Dense Egyptian Fractions

In [27], Erdős also considers various questions relating to Egyptian fraction
decompositions of 1 =

∑n
k=1

1
xk
. In particular, he conjectures that we must

always have xn
x1

≥ 3, with the extreme example coming from the decompo-

sition 1 = 1
2 + 1

3 + 1
6 . In fact, he suggests that it may even be true that

limn→∞
xn
x1

= ∞. However, it is now known that this is not the case. It fol-

lows from the work of Martin [43, 44] and Croot [18, 19] that the following
holds.

Theorem 1 [18]. Suppose that r > 0 is a given rational number. Then for
all N > 1, there exist integers x1, x2, . . . , xk, with

N < x1 < x2 < . . . < xk ≤
(
er +Or

(
log logN

logN

))
N

such that

r =
1

x1
+

1

x2
+ . . .+

1

xk
.

Moreover, the error term Or( log logNlogN ) is best possible.

This result settled one of the many questions raised in Chapter 4 (Unit
Fractions) of the booklet [28] of Erdős and the author.

Another question raised in [28] and answered by Martin [44] deals with
the quantity Lj(s) defined for a positive rational s by

Lj(s) =

{
x ∈ Z, x > s−1 : there do not exist

x1, . . . , xt ∈ Z, x1 > . . . > xt ≥ 1 with

t∑
i=1

1

xi
= s and xj = x

}
.

The largest denominator in an Egyptian fraction representation of s can be
a prime only if it is a prime divisor of s. Hence the set L1(s) contains most
primes and it is clearly infinite. However, L1(s) must have zero density as
dictated by the following result [44]:

Let L1(s;x) denote the counting function of L1(s), i.e.,

L1(s, x) = |{1 ≤ n ≤ x : n ∈ L1(x)}|.
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6 R. L. Graham

Then for any rational s > 0 and any real x ≥ 3, we have;

x log log x

log x
≪s L1(s, x) ≪s

x log log x

log x
.

However, for j ≥ 2, the situation is quite different. In fact, for any
j ≥ 2, Lj(s) is finite. In particular, there are only finitely many numbers
which cannot be the second-largest denominator in an Egyptian fraction
representation of 1. Martin suggests that perhaps the set {2, 4} is the com-
plete list (of those greater than 1).

4. More Problems From Old and New Problems and Results [28]

(Many of the problems and results in this section are taken more or less
directly from the above mentioned book. The reader can consult [28] for
more details).

It is known that any positive rational a
2b+1 can be represented as a

finite sum of the form
∑

k
1

2qk+1 (e.g., see [3, 9, 56]. An old question of

Stein [53] asks if such a decomposition can always be accomplished by the
greedy algorithm. In other words, if we start with an arbitrary positive
rational a

2b+1 and repeatedly subtract the largest unit fraction 1
2q+1 so

that the remainder is nonnegative, must this process always terminate?
No examples are known which provably do not terminate, although there
are terminating rationals for which the denominators become very large.
For example, starting with 5

1444613 , the greedy algorithm takes 37 terms
to terminate, with the largest denominator having 384,122,451,172 decimal
digits (see [45]). It is known [36] that a positive rational a

b can be expressed

as a finite sum of fractions of the form 1
pk+q if and only if

(
b

(b,(p,q)) ,
p

(p,q)

)
= 1.

One could ask here whether the greedy algorithm always terminates for this
representation as well. Restricting the denominators even more, the author
has shown [37] that a necessary and sufficient condition that a rational a

b
can be expressed as

a

b
=

1

x21
+

1

x22
+ . . .+

1

x2k
for positive integers 0 < x1 < x2 < . . . < xk,

is that

a

b
∈
[
0,

π2

6
− 1

)
∪
[
1,

π2

6

)
.
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Paul Erdős and Egyptian Fractions 7

For example,

1

2
=

1

22
+

1

32
+

1

42
+

1

52
+

1

62
+

1

152
+

1

162
+

1

362
+

1

602
+

1

1802
.

I believe that it would be a very rare event for the greedy algorithm to
succeed in this situation!6

In this vein, a number of questions were raised by Wilf [64] concerning
what he called “reciprocal bases for the integers”. By this he meant sets S
of integers so that every positive integer can be represented as a finite sum
of reciprocals of integers taken from S. For example, he asked: “Is every
infinite arithmetic progression a reciprocal basis?” (Yes, by [3, 36]); “Must
a reciprocal basis have positive density? ”(No, by [3, 36]).

More generally, one could define a reciprocal basis for the rationals to
be a set S of positive integers so that every positive rational p

q is a finite

sum of reciprocals of elements in S. At present, we don’t know necessary
and sufficient conditions for a set to be a reciprocal basis for the integers or
the rationals7. However, a general theorem in this direction is the following.

For a set T = {t1, t2, . . . } of positive integers, define P (T ) to be the set
of all finite sums of elements taken from T . Also, define T−1 = { 1

ti
: ti ∈ T}.

We will say that T is complete if every sufficiently large integer belongs to
P (T ). Further, define M(T ) to be the set of all products ti1ti2 . . . tir where
1 ≤ i1 < i2 < . . . < ir with r = 1,2, . . .. Finally, let us say that a real number
α is T-accessible if for all ε > 0, there is a u ∈ T such that 0 ≤ u− α < ε.
In [36], the following result is proved.

Theorem 2. Suppose S = (s1, s2, . . .) is a sequence of positive integers so
that M(S) is complete and sn+1

sn
is bounded as n → ∞.

Then p
q ∈ P (M(S)−1 (with (p, q) = 1) if and only if p

q is M(S)−1-

accessible and q divides some element of M(S).

It follows from this, for example, the set consisting of the primes together
with the squares forms a reciprocal basis for the rationals. It is not known
whether the condition that sn+1

sn
be bounded is needed for the conclusion of

the theorem to hold.

A classical result of Curtiss [22] asserts that the closest strict under
approximation Rn of 1 by a sum of n unit fractions is always given by
taking Rn =

∑n
k=1

1
uk+1 , where un is defined recursively by: u1 = 1, and

un+1 = un(un + 1) for n ≥ 1. The analogous fact is also known to hold [27]

6For similar results using nth powers rather than squares, see [37].
7In fact, I don’t know of any good conjectures here.
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8 R. L. Graham

for rationals of the form 1
m . However, it does not hold for some rationals,

e.g., R1(1124) =
1
3 while R2(1124) =

1
4 + 1

5 . Perhaps it is true that for any
rational it does hold eventually. In other words, is it true that for any
rational a

b , the closest strict under approximation Rn(ab) of a
b is given by

Rn

(a
b

)
= Rn−1

(a
b

)
+

1

m

wherem is the least denominator not yet used for whichRn(ab) <
a
b provided

that n is sufficiently large? In fact, as we state in [28], this behavior might
even hold for all algebraic numbers.

For each n, let Xn denote the set{
{x1, x2, . . . , xn} :

n∑
k=1

1

xk
= 1, 0 < x1 < x2 < . . . < xn

}

and let X = ∪n≥1Xn. There are many attractive unresolved questions
concerning these sets which were raised in [28], some of which I will now
mention.

To begin, it would be interesting to have asymptotic formulas or even
good estimates for |Xn|. To the best of my knowledge, the best estimates
currently known [50] are:

e
c n3

logn < |Xn| < c
(1+ε)2n−1

0

where c0 = limn→∞ u
1
2n
n = 1.264085 . . ., with un defined as above (see [2]).

Perhaps the lower bound can be replaced by c2
n(1−ε)

0 .

In view of the large number of sets in X, one would suspect that the
condition that the reciprocals of a set of integers sum to 1 is not really a very
stringent condition (modulo some obvious modular and size restrictions,
e.g., the largest element cannot be prime). For example, it has been shown

in [35] that for allm ≥ 78, there is a set {x1, x2, . . . , xt} ∈ X with
∑t

k=1 xk =
m. Furthermore, this is not true for 77 [42]. I would conjecture that
this behavior is true much more generally. Namely, it should be true
that for any polynomial p : Z → Z, there is a set {x1, x2, . . . , xt} ∈ X with∑t

k=1 p(xk) = m, for all sufficiently large m, provided p satisfies the obvious
necessary conditions:

(i) The leading coefficient of p is positive;
(ii) gcd (p(1), p(2), . . . , ) = 1.
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Paul Erdős and Egyptian Fractions 9

It is known [15] that these conditions are sufficient for expressing every
sufficiently large integer as a sum

∑
aidistinct

p(ai).

How many integers xk < n can occur as an element of {x1, x2, . . . , xn} ∈
Xn? Are there o(n), cn or n− o(n)?

What is the least integer v(n) > 1 which does not occur as an xk, k
variable, for {x1, x2, . . . , xn} ∈ Xn? It is easy to see that v(n) > cn! by

results in [6, 7, 8]. It may be that v(n) actually grows more like 22
√

n
or

even 22
n(1−ε)

.

Denote by kr(n) the least integer which does not occur as xr in any
{x1, x2, . . . , xt} ∈ Xn with x1 < x2 < . . . < xt ≤ n. It is not hard to show

k1(n) <
cn

log n
.

We have no idea of the true value of kr(n) or even k1(n).

As a related problem, suppose we define K(n) to be the least integer
which does not occur as xi for any i in any {x1, x2, . . . , xt} ∈ Xn with
x1 < x2 < . . . < xt ≤ n. Again,

K(n) <
cn

log n

is easy but at present we do not even know if k1(n) < K(n).

How many disjoint sets Si ∈ X, 1 ≤ i ≤ k, can we find so that Si ⊆
{1, 2, . . . , n}? As C. Sándor notes [51], applying the results of Theorem 1
iteratively, we should be able to achieve k = (1+ o(1)) logn. More generally,
how many disjoint sets Ti ⊆ {1, 2, . . . , n} are there so that all the sums∑

t∈Ti

1
t are equal. By using strong ∆-systems [30], it can be shown that

there are at least n
ec

√
logn

such Ti. Is this the right order of magnitude? One

could also ask how many disjoint sets {x1, x2, . . . , xn} ∈ Xn are possible. It
is probably true that there are only o(log n) such sets.

Another set of attractive questions concerns what might be called Ram-
sey properties of the Xn. It was asked in [28] whether for any partition of
{2, 3, 4, . . .} into finitely many blocks, some block must contain an element
of X. Put another way, is it true that if the integers greater than 1 are
arbitrarily r-colored, then at least one of the color classes contains a finite
set of integers whose reciprocals sum to 1? Erdős and I liked this problem
so much that we posted a reward $500 for its solution. As it turned out,
the problem was settled in the affirmative by a beautiful argument of Ernie
Croot [20].8

8As it happened, Erdős did not live to see the solution. When I asked Ernie whether he
would like a check for the $500 signed by Erdős, he said he would pleased to be paid this
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10 R. L. Graham

A stronger conjecture is that any sequence x1 < x2 < . . . of positive
upper density contains a subset whose reciprocals sum to 1. Perhaps this
can be proved if we assume that the differences xk+1 − xk are bounded. It
is not enough to just assume that

∑
k

1
xk

is unbounded as the set of primes

shows. (The letter in Figure 1 from Erdős’ mathematical notebook from
1963 shows our interest in these questions going back some 50 years. In
the appendix, we show some additional notes of Erdős on these problems).
However, perhaps the sum

∑n
k=1

1
xk

cannot grow much faster than this (i.e.,

log log n) for the xk to fail to form some x ∈ X.

Let A(n) denote the largest value of |S| such that S ⊆ {1, 2, . . . , n}
contains no set in X. Probably A(n) = n− o(n) but this is not known.
A related question is this. What is the smallest set S′ ⊆ {1, 2, . . . , n} which
contains no set in X and which is maximal in this respect. Very little
is known here. More generally, one could ask for the largest subset S∗

n ⊆
{1, 2, . . . , n} so that for any distinct elements s, s1, s2, . . . , sm ∈ S∗

n, we have
1
s ̸=

∑m
k=1

1
sk

where m > 1? We can certainly have |S∗
n| > cn as the set

{i : n
2 < i < n} shows. Can |S∗

n| > cn for c > 1
2? Is it true that if S ⊆

{1, 2, . . . , n} with |S| > cn then S contains x, y, z with 1
x + 1

y = 1
z? It

has been shown by Brown and Rödl [10] that the partition version of this
question holds, i.e., for any partition of Z into finitely many classes and
for any fixed value of n, one of the classes must contain a solution to
1
x1

+ 1
x2

+ · · ·+ 1
xn

= 1
z .

There are many interesting unresolved questions which involve restrict-
ing the denominators of the elements in the Sn. For example, Burshtein [11]
gives an example of {x1, x2, . . . , xn} ∈ Xn with no xi dividing any other xj .
Even more striking, Barbeau [5] finds an example in which each xi is the
product of exactly 2 distinct primes. A smaller such example was given
by Burshtein [12, 13], The smallest such example known is that of Allan
Johnson (see [39]) with the denominators shown in the table below.

way. (I kept a number of checks pre-signed by Erdős for just such contingencies.) After
sending Ernie the Erdős check, I subsequently sent Ernie a real check for $500, which he
certainly earned. However, unknown to me, Ernie cashed the Erdős check. That is, it
was sent to my bank and it was honored. This was unexpected since Erdős never had an
account at my bank! I am guessing that the bank tellers were so used to seeing Erdős’
checks countersigned by me that they just assumed this was one of those and they cashed
it. When I discovered this, I wrote to Ernie that he owed me $500. He agreed to send
back the $500 overpayment but on the condition that I send him back the canceled Erdős
check (which I did).
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Paul Erdős and Egyptian Fractions 11

Fig. 1. A page from Erdős’ 1963 notebook

6 21 34 46 58 77 87 114 155 215 287 391
10 22 35 51 62 82 91 119 187 221 299 689
14 26 38 55 65 85 93 123 203 247 319 731
15 33 39 57 69 86 95 133 209 265 323 901

Table 1. Denominators for Johnson’s decomposition of 1

However, as Barbeau notes in [4], it is not known if 1 can be represented
as the product of two sums of the form 1

q1
+ 1

q2
+ . . .+ 1

qr
where the qi are

distinct primes. Perhaps this can be done if we just assume that the qi
are pairwise relatively prime. (Related results can be found in [33].) In
a (still) unfinished manuscript of Erdős and the author9, it is shown that
any integer can be represented as a sum of reciprocals of distinct numbers
which each have exactly three prime factors (see [39]). Whether this can be
accomplished with just two prime factors is not clear.

In [54], Shparlinski answers a question of Erdős and the author by
proving the following result.

9I’m still working on it!
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12 R. L. Graham

Theorem 3. For any ε > 0 there is a k(ε) such that for any prime p and any
integer c there exist k ≤ k(ε) pairwise distinct integers xi with 1 ≤ xi ≤ pε,
and such that

k∑
i=1

1

xi
≡ c (mod p).

(Here, the reciprocals are taken modulo p). This has been generalized
by Croot [21] to the case when the denominators are all of the form xki for
a general positive integer k.

5. The Story of an Incorrect Conjecture

Naturally, not every conjecture of Erdős and the author in [28] was correct.
Here is an example of one such conjecture and some of the subsequent
developments. In [28], the following question was raised.

Suppose that ak are positive integers satisfying

1 < a1 < a2 < . . . < at.(3)

Is it true that if
∑t

k=1
1
ak

< 2, then there exist εk = 0 or 1 so that

t∑
k=1

εk
ak

< 1 and

t∑
k=1

1− εk
ak

< 1?

As noted in [28], this is not true if we just assume that

1 < a1 ≤ a2 ≤ . . . ≤ at(4)

as the sequence 2, 3, 3, 5, 5, 5, 5 shows. However, it was pointed out
by Sándor [49] that our conjecture was too optimistic since the sequence
consisting of the divisors of 120 with the exception of 1 and 120 provides
a counterexample. In fact, Sándor proved the more general result that for
every n ≥ 2, there exist integers ak satisfying (3) such that

∑t
k=1

1
ak

< n

and that this sum cannot be split into n parts so that all the partial sums
are ≤ 1. However, he also shows that for such a sequence the sum cannot
be too much less than n. Specifically, Sándor proves:

Theorem 4. Suppose n ≥ 2. If 1 < a1 < a2 < . . . < at are integers and

t∑
k=1

1

ak
< n− n

en−1

then this sum can be decomposed into n parts so that all partial sums are
≤ 1.
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It was however conjectured by Erdős, Spencer and the author that if the
ak satisfy (4), as well as the stronger condition

t∑
k=1

1

ak
< n− 1

30
,(5)

then the ak can be split into n sequences a
(i)
k , 1 ≤ i ≤ n, so that

∑
k

1

a
(i)
k

≤ 1

for all i. The reason that the bound n− 1
30 was chosen was because of the

example a1 = 2, a2 = a3 = 3, a4 = a5 = . . . = a5n−3 = 5. Put another way,
define α(n) to be the least real number so that if the ak satisfy (4) and

t∑
k=1

1

ak
< n− α(n)(6)

then the ak can be split into n sequences a
(i)
k , 1 ≤ i ≤ n, so that

∑
k

1

a
(i)
k

≤ 1

for all i. Thus, the conjecture in [28] was that α(n) = 1
30 . In [49] it was

shown by Sándor that α(n) ≤ 1
2 . This was improved by Chen [16] who shows

that α(n) ≤ 1
3 . This in turn was followed by the paper of Fang and Chen [31]

who prove that α(n) ≤ 2
7 . However, the original conjecture that α(n) = 1

30

was finally disproved by Guo [38] who showed that α(n) ≥ 5
132 > 1

30 . He
shows that for the sequence a1 = 2, a2 = 3, a4 = 4, a5 = . . . = a11n−12 = 11,

11n−12∑
k=1

1

ak
= n− 5

132
,

but for any partition of {1, 2, . . . , 11n− 12} = ∪n
j=1Aj , there exists a j such

that
∑

k∈Aj

1
ak

> 1. At present, we have no guess as to what the truth is

for this problem.
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6. Concluding Remarks

We have tried to give a sample of the very many interesting questions and
results that were inspired by Paul Erdős’ interest in Egyptian fractions. Of
course, this list is far from complete, and in fact the subject is still quite
dynamic. For further references, the reader can consult [39], [28], [52] or
[14], for example, and the references therein.
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[55] W. Sierpiński, Sur les décompositions de nombres rationnels en fractions primaires,
Mathesis, 65 (1956), 16–32.

[56] B. M. Stewart, Sums of distinct divisors, Amer. J. Math. 76 (1954), 779–785.

[57] A. Swett, http://math.uindy.edu/swett/esc.htm (accessed on 12/8/12).

[58] R. C. Vaughan, On a problem of Erdős, Straus and Schinzel, Mathematica. 17
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7. Appendix: Some (Undated) Notes of Erdős on
Egyptian Fractions

Fig. 2. Some notes of Erdős on Egyptian fractions
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Fig. 3. More notes of Erdős on Egyptian fractions
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Fig. 4. Notes of Erdős on Egyptian fractions (while visiting Bell Labs)
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Fig. 5. Notes of Erdős on Egyptian fractions (while visiting Bell Labs)


