# Paul Erdős and Egyptian Fractions 

R. L. GRAHAM


#### Abstract

One of Paul Erdős' earliest mathematical interests was the study of so-called Egyptian fractions, that is, finite sums of distinct fractions having numerator 1. In this note we survey various results in this subject, many of which were motivated by Erdős' problems and conjectures on such sums. This note complements the excellent treatment of this topic given by A. Schinzel in $2002 .{ }^{1}$


## 1. Introduction

The Rhind Papyrus of Ahmes [47] (see also [34, 63]) is one of the oldest known mathematical manuscripts, dating from around 1650 B.C. It contains among other things, a list of expansions of fractions of the form $\frac{2}{n}$ into sums of distinct unit fractions, that is, fractions with numerator 1. Examples of such expansions are $\frac{2}{35}=\frac{1}{30}+\frac{1}{42}$ and $\frac{2}{63}=\frac{1}{56}+\frac{1}{72}$. More generally, one can consider expansions of more general rational numbers into sums of unit fractions with distinct denominators such as:

$$
\frac{10}{73}=\frac{1}{11}+\frac{1}{22}+\frac{1}{1606}, \quad \frac{67}{2012}=\frac{1}{31}+\frac{1}{960}+\frac{1}{2138469}+\frac{1}{10670447077440},
$$

and

$$
1=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{14}+\frac{1}{15}+\frac{1}{18}+\frac{1}{20}+\frac{1}{24}+\frac{1}{28}+\frac{1}{30} .
$$

There are various explanations as to why the Egyptians chose to use such representations (for example, see [63]) but perhaps the most compelling is that given to the author some years ago by the legendary mathematician

[^0]André Weil [62]. When I asked him why he thought the Egyptians used this method for representing fractions, he thought for a moment and then said, "It is easy to explain. They took a wrong turn!".

As is well known, Erdős' first major result (and first paper) was his beautiful 1932 proof [25] of Bertrand's postulate, namely that for any positive integer $n>1$, there is always a prime between $n$ and $2 n .^{2}$ In particular, Erdős' proof was based in part on an analysis of the prime divisors of the binomial coefficients $\binom{2 n}{n}$. What is perhaps less well known is that Erdős' second paper [26], also published in 1932, dealt with Egyptian fractions. In it, he generalizes an elementary result of Kürschák [41] by showing that for any choice of positive integers $a, d$ and $n$, the sum $\sum_{k=1}^{n} \frac{1}{a+k d}$ is never an integer. ${ }^{3}$

The next paper of Erdős dealing with Egyptian fractions was his 1945 paper with I. Niven [29]. In that paper, they showed among other things that no two partial sums of the harmonic series can be equal, i.e., $\sum_{i=r}^{s} i^{-1}=$ $\sum_{i=t}^{u} i^{-1}$ implies $r=t$ and $s=u$. In that paper they also showed that for only finitely many $n$ can one or more of the elementary symmetric functions of $1, \frac{1}{2}, \ldots, \frac{1}{n}$ be an integer. Very recently, this was strengthened in a paper of Chen and Tang [17]. In that paper, they showed that the only pairs ( $k, n$ ) for which the $k^{t h}$ elementary function $S(k, n)$ of $1, \frac{1}{2}, \ldots, \frac{1}{n}$ is an integer is $S(1,1)=1$ and $S(2,3)=(1)\left(\frac{1}{2}\right)+(1)\left(\frac{1}{3}\right)+\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)=1$. Thus, for $n \geq 4$, none of the elementary functions are integers.

Perhaps the paper of Erdős dealing with Egyptian fractions which has had the greatest impact was his 1950 paper [27]. In this seminal paper, he considers the quantity $N(a, b)$, defined for integers $1 \leq a<b$ to be least value $n$ such that the equation $\frac{a}{b}=\sum_{k=1}^{n} \frac{1}{x_{k}}$ has a solution with $0<x_{1}<$ $x_{2}<\ldots<x_{n}$. In particular, he shows that $N(b)=\max _{1 \leq a \leq b} N(a, b)$ satisfies $\log \log b \ll N(b) \ll \frac{\log b}{\log \log b}$, sharpening an earlier result of deBruijn and others. It is conjectured in [27] that $N(b) \ll \log \log b$. The best result in this direction at present is due to Vose [59] who showed that $N(b) \ll \sqrt{\log b}$.

[^1]It is also in this paper that the celebrated Erdős-Straus " $\frac{4}{n}$ conjecture" occurs, namely that $N(4, b) \leq 3$ for every $b>2$. This will be the subject of the next section.

## 2. The Erdős-Straus Conjecture

The first proof that any positive rational $\frac{a}{b}$ has an Egyptian fraction representation:

$$
\begin{equation*}
\frac{a}{b}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}, \quad 1 \leq x_{1}<x_{2}<\ldots<x_{n} \tag{1}
\end{equation*}
$$

was given by Fibonacci ( $=$ Leonardo Pisano) in 1202 [32]. His method was to apply the greedy algorithm, namely always subtract the largest possible unit fraction from the current remainder so that the result is nonnegative. While this ordinarily does not produce the shortest possible representation, or the one with smallest maximum denominator, it does terminate in finitely many steps since eventually the numerator of the reduced remainder must strictly decrease at each step. In particular, for fractions of the form $\frac{2}{n}$ for $n>1$, the greedy algorithm only needs 2 steps, and for $\frac{3}{n}$, it only needs 3 steps. While this algorithm would guarantee that for the fractions $\frac{4}{n}$, a representation with 4 unit fractions is guaranteed, Erdős and Straus [27] conjectured that in fact such a fraction always had an Egyptian fraction expansion with at most 3 terms. It is easy to see that in order to prove this, it is enough to show that it holds for prime values of $n$. There have been many papers published studying various aspects of this problem (for example, see $[1,40,48,61,60]$ and especially the references in [39]). For example, it is known that if the conjectures fails for some value $n$ then $n$ must be congruent to one of $1^{2}, 11^{2}, 13^{2}, 17^{2}, 19^{2}$ or $23^{2}(\bmod 840)$. From a computational perspective, the conjecture has been verified for $n \leq 10^{14}$ [57]. One of the most recent treatments is in a long paper of Elsholtz and Tao [24] (extending earlier work of Elsholtz [23]). Among their many results are the following. Let $f(n)$ denote the number of different solutions to the equation

$$
\begin{equation*}
\frac{4}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}} \tag{2}
\end{equation*}
$$

where here the $x_{i}$ are not assumed to be distinct or ordered by size. It is easy to see that the Erdős-Straus conjecture is that $f(n)>0$ for $n>1$. In [24], it is shown that :
(i) $N \log ^{2} N \ll \sum_{q \leq N} f(q) \ll N \log ^{2} N \log \log N$ where $q$ ranges over primes;
(ii) For any prime $q$,

$$
f(q) \ll q^{\frac{3}{5}+O\left(\frac{1}{\log \log q}\right)} .
$$

(iii) For infinitely many $n$, one has

$$
f(n) \geq \exp \left((\log 3+o(1)) \frac{\log n}{\log \log n}\right) .
$$

In particular, it follows from this that there are relatively few solutions to (2) for most $n$. However, Vaughan [58] has shown that the number of $n \leq x$ for which the Erdős-Straus conjectures fails is $O\left(x \exp \left(-c(\log x)^{\frac{2}{3}}\right)\right)$, $c>0$. As of this writing, the original conjecture of Erdős and Straus is still unresolved. ${ }^{4}$

Motivated by the Erdős-Straus conjecture, Sierpiński [55] made the analogous conjecture ${ }^{5}$ for the fractions $\frac{5}{n}$, namely, that for all $n \geq 5$, there is a decomposition:

$$
\frac{5}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}, \quad 1 \leq x_{1}<x_{2}<x_{3}
$$

This has been verified for $5 \leq n \leq 1057438801$ (see [39]). More generally, Schinzel (also in [55]) conjectured that for any fraction $\frac{a}{n}$, one can express it as:

$$
\frac{a}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}, \quad 1 \leq x_{1}<x_{2}<x_{3},
$$

provided $n>n_{0}(a)$. Needless to say, these conjectures are currently still unsettled.

[^2]
## 3. Dense Egyptian Fractions

In [27], Erdős also considers various questions relating to Egyptian fraction decompositions of $1=\sum_{k=1}^{n} \frac{1}{x_{k}}$. In particular, he conjectures that we must always have $\frac{x_{n}}{x_{1}} \geq 3$, with the extreme example coming from the decomposition $1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$. In fact, he suggests that it may even be true that $\lim _{n \rightarrow \infty} \frac{x_{n}}{x_{1}}=\infty$. However, it is now known that this is not the case. It follows from the work of Martin [43, 44] and Croot $[18,19]$ that the following holds.

Theorem 1 [18]. Suppose that $r>0$ is a given rational number. Then for all $N>1$, there exist integers $x_{1}, x_{2}, \ldots, x_{k}$, with

$$
N<x_{1}<x_{2}<\ldots<x_{k} \leq\left(e^{r}+O_{r}\left(\frac{\log \log N}{\log N}\right)\right) N
$$

such that

$$
r=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{k}} .
$$

Moreover, the error term $O_{r}\left(\frac{\log \log N}{\log N}\right)$ is best possible.
This result settled one of the many questions raised in Chapter 4 (Unit Fractions) of the booklet [28] of Erdős and the author.

Another question raised in [28] and answered by Martin [44] deals with the quantity $L_{j}(s)$ defined for a positive rational $s$ by

$$
\begin{aligned}
& L_{j}(s)=\left\{x \in \mathbf{Z}, x>s^{-1}:\right. \text { there do not exist } \\
& \left.x_{1}, \ldots, x_{t} \in \mathbf{Z}, x_{1}>\ldots>x_{t} \geq 1 \text { with } \sum_{i=1}^{t} \frac{1}{x_{i}}=s \text { and } x_{j}=x\right\} .
\end{aligned}
$$

The largest denominator in an Egyptian fraction representation of $s$ can be a prime only if it is a prime divisor of $s$. Hence the set $L_{1}(s)$ contains most primes and it is clearly infinite. However, $L_{1}(s)$ must have zero density as dictated by the following result [44]:

Let $L_{1}(s ; x)$ denote the counting function of $L_{1}(s)$, i.e.,

$$
L_{1}(s, x)=\left|\left\{1 \leq n \leq x: n \in L_{1}(x)\right\}\right| .
$$

Then for any rational $s>0$ and any real $x \geq 3$, we have;

$$
\frac{x \log \log x}{\log x} \ll s L_{1}(s, x)<_{s} \frac{x \log \log x}{\log x} .
$$

However, for $j \geq 2$, the situation is quite different. In fact, for any $j \geq 2, L_{j}(s)$ is finite. In particular, there are only finitely many numbers which cannot be the second-largest denominator in an Egyptian fraction representation of 1 . Martin suggests that perhaps the set $\{2,4\}$ is the complete list (of those greater than 1).

## 4. More Problems From Old and New Problems and Results [28]

(Many of the problems and results in this section are taken more or less directly from the above mentioned book. The reader can consult [28] for more details).

It is known that any positive rational $\frac{a}{2 b+1}$ can be represented as a finite sum of the form $\sum_{k} \frac{1}{2 q_{k}+1}$ (e.g., see [3, 9, 56]. An old question of Stein [53] asks if such a decomposition can always be accomplished by the greedy algorithm. In other words, if we start with an arbitrary positive rational $\frac{a}{2 b+1}$ and repeatedly subtract the largest unit fraction $\frac{1}{2 q+1}$ so that the remainder is nonnegative, must this process always terminate? No examples are known which provably do not terminate, although there are terminating rationals for which the denominators become very large. For example, starting with $\frac{5}{144613}$, the greedy algorithm takes 37 terms to terminate, with the largest denominator having $384,122,451,172$ decimal digits (see [45]). It is known [36] that a positive rational $\frac{a}{b}$ can be expressed as a finite sum of fractions of the form $\frac{1}{p k+q}$ if and only if $\left(\frac{b}{(b,(p, q))}, \frac{p}{(p, q)}\right)=1$. One could ask here whether the greedy algorithm always terminates for this representation as well. Restricting the denominators even more, the author has shown [37] that a necessary and sufficient condition that a rational $\frac{a}{b}$ can be expressed as

$$
\frac{a}{b}=\frac{1}{x_{1}^{2}}+\frac{1}{x_{2}^{2}}+\ldots+\frac{1}{x_{k}^{2}} \text { for positive integers } 0<x_{1}<x_{2}<\ldots<x_{k}
$$

is that

$$
\frac{a}{b} \in\left[0, \frac{\pi^{2}}{6}-1\right) \cup\left[1, \frac{\pi^{2}}{6}\right) .
$$

For example,

$$
\frac{1}{2}=\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{36^{2}}+\frac{1}{60^{2}}+\frac{1}{180^{2}}
$$

I believe that it would be a very rare event for the greedy algorithm to succeed in this situation! ${ }^{6}$

In this vein, a number of questions were raised by Wilf [64] concerning what he called "reciprocal bases for the integers". By this he meant sets $S$ of integers so that every positive integer can be represented as a finite sum of reciprocals of integers taken from $S$. For example, he asked: "Is every infinite arithmetic progression a reciprocal basis?" (Yes, by [3, 36]); "Must a reciprocal basis have positive density? "(No, by $[3,36])$.

More generally, one could define a reciprocal basis for the rationals to be a set $S$ of positive integers so that every positive rational $\frac{p}{q}$ is a finite sum of reciprocals of elements in $S$. At present, we don't know necessary and sufficient conditions for a set to be a reciprocal basis for the integers or the rationals ${ }^{7}$. However, a general theorem in this direction is the following.

For a set $T=\left\{t_{1}, t_{2}, \ldots\right\}$ of positive integers, define $P(T)$ to be the set of all finite sums of elements taken from $T$. Also, define $T^{-1}=\left\{\frac{1}{t_{i}}: t_{i} \in T\right\}$. We will say that $T$ is complete if every sufficiently large integer belongs to $P(T)$. Further, define $M(T)$ to be the set of all products $t_{i_{1}} t_{i_{2}} \ldots t_{i_{r}}$ where $1 \leq i_{1}<i_{2}<\ldots<i_{r}$ with $r=1,2, \ldots$. Finally, let us say that a real number $\alpha$ is $T$-accessible if for all $\varepsilon>0$, there is a $u \in T$ such that $0 \leq u-\alpha<\varepsilon$. In [36], the following result is proved.

Theorem 2. Suppose $S=\left(s_{1}, s_{2}, \ldots\right)$ is a sequence of positive integers so that $M(S)$ is complete and $\frac{s_{n+1}}{s_{n}}$ is bounded as $n \rightarrow \infty$.

Then $\frac{p}{q} \in P\left(M(S)^{-1} \quad(\right.$ with $(p, q)=1)$ if and only if $\frac{p}{q}$ is $M(S)^{-1}$ accessible and $q$ divides some element of $M(S)$.

It follows from this, for example, the set consisting of the primes together with the squares forms a reciprocal basis for the rationals. It is not known whether the condition that $\frac{s_{n+1}}{s_{n}}$ be bounded is needed for the conclusion of the theorem to hold.

A classical result of Curtiss [22] asserts that the closest strict under approximation $R_{n}$ of 1 by a sum of $n$ unit fractions is always given by taking $R_{n}=\sum_{k=1}^{n} \frac{1}{u_{k}+1}$, where $u_{n}$ is defined recursively by: $u_{1}=1$, and $u_{n+1}=u_{n}\left(u_{n}+1\right)$ for $n \geq 1$. The analogous fact is also known to hold [27]

[^3]for rationals of the form $\frac{1}{m}$. However, it does not hold for some rationals, e.g., $R_{1}\left(\frac{11}{24}\right)=\frac{1}{3}$ while $R_{2}\left(\frac{11}{24}\right)=\frac{1}{4}+\frac{1}{5}$. Perhaps it is true that for any rational it does hold eventually. In other words, is it true that for any rational $\frac{a}{b}$, the closest strict under approximation $R_{n}\left(\frac{a}{b}\right)$ of $\frac{a}{b}$ is given by
$$
R_{n}\left(\frac{a}{b}\right)=R_{n-1}\left(\frac{a}{b}\right)+\frac{1}{m}
$$
where $m$ is the least denominator not yet used for which $R_{n}\left(\frac{a}{b}\right)<\frac{a}{b}$ provided that $n$ is sufficiently large? In fact, as we state in [28], this behavior might even hold for all algebraic numbers.

For each $n$, let $\mathbf{X}_{n}$ denote the set

$$
\left\{\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}: \sum_{k=1}^{n} \frac{1}{x_{k}}=1,0<x_{1}<x_{2}<\ldots<x_{n}\right\}
$$

and let $\mathbf{X}=\cup_{n \geq 1} \mathbf{X}_{n}$. There are many attractive unresolved questions concerning these sets which were raised in [28], some of which I will now mention.

To begin, it would be interesting to have asymptotic formulas or even good estimates for $\left|\mathbf{X}_{n}\right|$. To the best of my knowledge, the best estimates currently known [50] are:

$$
e^{c^{n^{3}}} \log n\left|\mathbf{X}_{n}\right|<c_{0}^{(1+\varepsilon) 2^{n-1}}
$$

where $c_{0}=\lim _{n \rightarrow \infty} u_{n}^{\frac{1}{2 n}}=1.264085 \ldots$, with $u_{n}$ defined as above (see [2]). Perhaps the lower bound can be replaced by $c_{0}^{2^{n(1-\varepsilon)}}$.

In view of the large number of sets in $\mathbf{X}$, one would suspect that the condition that the reciprocals of a set of integers sum to 1 is not really a very stringent condition (modulo some obvious modular and size restrictions, e.g., the largest element cannot be prime). For example, it has been shown in [35] that for all $m \geq 78$, there is a set $\left\{x_{1}, x_{2}, \ldots, x_{t}\right\} \in \mathbf{X}$ with $\sum_{k=1}^{t} x_{k}=$ $m$. Furthermore, this is not true for 77 [42]. I would conjecture that this behavior is true much more generally. Namely, it should be true that for any polynomial $p: \mathbf{Z} \rightarrow \mathbf{Z}$, there is a set $\left\{x_{1}, x_{2}, \ldots, x_{t}\right\} \in \mathbf{X}$ with $\sum_{k=1}^{t} p\left(x_{k}\right)=m$, for all sufficiently large $m$, provided $p$ satisfies the obvious necessary conditions:
(i) The leading coefficient of $p$ is positive;
(ii) $\operatorname{gcd}(p(1), p(2), \ldots)=$,1 .

It is known [15] that these conditions are sufficient for expressing every sufficiently large integer as a sum $\sum_{a_{i} \text { distinct }} p\left(a_{i}\right)$.

How many integers $x_{k}<n$ can occur as an element of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \in$ $\mathbf{X}_{n}$ ? Are there $o(n), c n$ or $n-o(n)$ ?

What is the least integer $v(n)>1$ which does not occur as an $x_{k}, k$ variable, for $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \in \mathbf{X}_{n}$ ? It is easy to see that $v(n)>c n$ ! by results in $[6,7,8]$. It may be that $v(n)$ actually grows more like $2^{2^{\sqrt{n}}}$ or even $2^{2^{n(1-\varepsilon)}}$.

Denote by $k_{r}(n)$ the least integer which does not occur as $x_{r}$ in any $\left\{x_{1}, x_{2}, \ldots, x_{t}\right\} \in \mathbf{X}_{n}$ with $x_{1}<x_{2}<\ldots<x_{t} \leq n$. It is not hard to show

$$
k_{1}(n)<\frac{c n}{\log n}
$$

We have no idea of the true value of $k_{r}(n)$ or even $k_{1}(n)$.
As a related problem, suppose we define $K(n)$ to be the least integer which does not occur as $x_{i}$ for any $i$ in any $\left\{x_{1}, x_{2}, \ldots, x_{t}\right\} \in \mathbf{X}_{n}$ with $x_{1}<x_{2}<\ldots<x_{t} \leq n$. Again,

$$
K(n)<\frac{c n}{\log n}
$$

is easy but at present we do not even know if $k_{1}(n)<K(n)$.
How many disjoint sets $S_{i} \in \mathbf{X}, 1 \leq i \leq k$, can we find so that $S_{i} \subseteq$ $\{1,2, \ldots, n\}$ ? As C. Sándor notes [51], applying the results of Theorem 1 iteratively, we should be able to achieve $k=(1+o(1)) \log n$. More generally, how many disjoint sets $T_{i} \subseteq\{1,2, \ldots, n\}$ are there so that all the sums $\sum_{t \in T_{i}} \frac{1}{t}$ are equal. By using strong $\Delta$-systems [30], it can be shown that there are at least $\frac{n}{e^{c \sqrt{\log n}}}$ such $T_{i}$. Is this the right order of magnitude? One could also ask how many disjoint sets $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \in \mathbf{X}_{n}$ are possible. It is probably true that there are only $o(\log n)$ such sets.

Another set of attractive questions concerns what might be called Ramsey properties of the $\mathbf{X}_{n}$. It was asked in [28] whether for any partition of $\{2,3,4, \ldots\}$ into finitely many blocks, some block must contain an element of $\mathbf{X}$. Put another way, is it true that if the integers greater than 1 are arbitrarily $r$-colored, then at least one of the color classes contains a finite set of integers whose reciprocals sum to 1? Erdős and I liked this problem so much that we posted a reward $\$ 500$ for its solution. As it turned out, the problem was settled in the affirmative by a beautiful argument of Ernie Croot [20]. ${ }^{8}$

[^4]A stronger conjecture is that any sequence $x_{1}<x_{2}<\ldots$ of positive upper density contains a subset whose reciprocals sum to 1 . Perhaps this can be proved if we assume that the differences $x_{k+1}-x_{k}$ are bounded. It is not enough to just assume that $\sum_{k} \frac{1}{x_{k}}$ is unbounded as the set of primes shows. (The letter in Figure 1 from Erdős' mathematical notebook from 1963 shows our interest in these questions going back some 50 years. In the appendix, we show some additional notes of Erdős on these problems). However, perhaps the sum $\sum_{k=1}^{n} \frac{1}{x_{k}}$ cannot grow much faster than this (i.e., $\log \log n$ ) for the $x_{k}$ to fail to form some $\bar{x} \in \mathbf{X}$.

Let $A(n)$ denote the largest value of $|S|$ such that $S \subseteq\{1,2, \ldots, n\}$ contains no set in X. Probably $A(n)=n-o(n)$ but this is not known. A related question is this. What is the smallest set $S^{\prime} \subseteq\{1,2, \ldots, n\}$ which contains no set in $\mathbf{X}$ and which is maximal in this respect. Very little is known here. More generally, one could ask for the largest subset $S_{n}^{*} \subseteq$ $\{1,2, \ldots, n\}$ so that for any distinct elements $s, s_{1}, s_{2}, \ldots, s_{m} \in S_{n}^{*}$, we have $\frac{1}{s} \neq \sum_{k=1}^{m} \frac{1}{s_{k}}$ where $m>1$ ? We can certainly have $\left|S_{n}^{*}\right|>c n$ as the set $\left\{i: \frac{n}{2}<i<n\right\}$ shows. Can $\left|S_{n}^{*}\right|>c n$ for $c>\frac{1}{2}$ ? Is it true that if $S \subseteq$ $\{1,2, \ldots, n\}$ with $|S|>c n$ then $S$ contains $x, y, z$ with $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$ ? It has been shown by Brown and Rödl [10] that the partition version of this question holds, i.e., for any partition of $\mathbf{Z}$ into finitely many classes and for any fixed value of $n$, one of the classes must contain a solution to $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}=\frac{1}{z}$.

There are many interesting unresolved questions which involve restricting the denominators of the elements in the $\mathbf{S}_{n}$. For example, Burshtein [11] gives an example of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \in \mathbf{X}_{n}$ with no $x_{i}$ dividing any other $x_{j}$. Even more striking, Barbeau [5] finds an example in which each $x_{i}$ is the product of exactly 2 distinct primes. A smaller such example was given by Burshtein [12, 13], The smallest such example known is that of Allan Johnson (see [39]) with the denominators shown in the table below.

[^5]1 Graham) Legree $a_{1}<\cdots, a_{i+1} a_{i}<c$, gur $e$ hogg $1=\sum \frac{1}{a_{i n}}$ megrothati'? Ugguner kindesheto havoc out temül fell, hero $\lim _{k / k} a_{k}-\infty$.

 $\sum x_{1}=n$ ar reggie rinben megoldhati, (fóhatir $m \cdot n ? \%$, Ha let wi one ontgul abhor $m=x+y$ wag $m=x+y+z$ is mir megoldhati len. He a nat nimikat Ret meme orifull whir mister
 nam onege-uganes isar len l rios sa valois namelsa inside


Fig. 1. A page from Erdős' 1963 notebook

| 6 | 21 | 34 | 46 | 58 | 77 | 87 | 114 | 155 | 215 | 287 | 391 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 22 | 35 | 51 | 62 | 82 | 91 | 119 | 187 | 221 | 299 | 689 |
| 14 | 26 | 38 | 55 | 65 | 85 | 93 | 123 | 203 | 247 | 319 | 731 |
| 15 | 33 | 39 | 57 | 69 | 86 | 95 | 133 | 209 | 265 | 323 | 901 |

Table 1. Denominators for Johnson's decomposition of 1
However, as Barbeau notes in [4], it is not known if 1 can be represented as the product of two sums of the form $\frac{1}{q_{1}}+\frac{1}{q_{2}}+\ldots+\frac{1}{q_{r}}$ where the $q_{i}$ are distinct primes. Perhaps this can be done if we just assume that the $q_{i}$ are pairwise relatively prime. (Related results can be found in [33].) In a (still) unfinished manuscript of Erdős and the author ${ }^{9}$, it is shown that any integer can be represented as a sum of reciprocals of distinct numbers which each have exactly three prime factors (see [39]). Whether this can be accomplished with just two prime factors is not clear.

In [54], Shparlinski answers a question of Erdős and the author by proving the following result.
${ }^{9}$ I'm still working on it!

Theorem 3. For any $\varepsilon>0$ there is a $k(\varepsilon)$ such that for any prime $p$ and any integer $c$ there exist $k \leq k(\varepsilon)$ pairwise distinct integers $x_{i}$ with $1 \leq x_{i} \leq p^{\varepsilon}$, and such that

$$
\sum_{i=1}^{k} \frac{1}{x_{i}} \equiv c \quad(\bmod p)
$$

(Here, the reciprocals are taken modulo $p$ ). This has been generalized by Croot [21] to the case when the denominators are all of the form $x_{i}^{k}$ for a general positive integer $k$.

## 5. The Story of an Incorrect Conjecture

Naturally, not every conjecture of Erdős and the author in [28] was correct. Here is an example of one such conjecture and some of the subsequent developments. In [28], the following question was raised.

Suppose that $a_{k}$ are positive integers satisfying

$$
\begin{equation*}
1<a_{1}<a_{2}<\ldots<a_{t} . \tag{3}
\end{equation*}
$$

Is it true that if $\sum_{k=1}^{t} \frac{1}{a_{k}}<2$, then there exist $\varepsilon_{k}=0$ or 1 so that

$$
\sum_{k=1}^{t} \frac{\varepsilon_{k}}{a_{k}}<1 \quad \text { and } \quad \sum_{k=1}^{t} \frac{1-\varepsilon_{k}}{a_{k}}<1 ?
$$

As noted in [28], this is not true if we just assume that

$$
\begin{equation*}
1<a_{1} \leq a_{2} \leq \ldots \leq a_{t} \tag{4}
\end{equation*}
$$

as the sequence $2,3,3,5,5,5,5$ shows. However, it was pointed out by Sándor [49] that our conjecture was too optimistic since the sequence consisting of the divisors of 120 with the exception of 1 and 120 provides a counterexample. In fact, Sándor proved the more general result that for every $n \geq 2$, there exist integers $a_{k}$ satisfying (3) such that $\sum_{k=1}^{t} \frac{1}{a_{k}}<n$ and that this sum cannot be split into $n$ parts so that all the partial sums are $\leq 1$. However, he also shows that for such a sequence the sum cannot be too much less than $n$. Specifically, Sándor proves:
Theorem 4. Suppose $n \geq 2$. If $1<a_{1}<a_{2}<\ldots<a_{t}$ are integers and

$$
\sum_{k=1}^{t} \frac{1}{a_{k}}<n-\frac{n}{e^{n-1}}
$$

then this sum can be decomposed into $n$ parts so that all partial sums are $\leq 1$.

It was however conjectured by Erdős, Spencer and the author that if the $a_{k}$ satisfy (4), as well as the stronger condition

$$
\begin{equation*}
\sum_{k=1}^{t} \frac{1}{a_{k}}<n-\frac{1}{30}, \tag{5}
\end{equation*}
$$

then the $a_{k}$ can be split into $n$ sequences $a_{k}^{(i)}, 1 \leq i \leq n$, so that

$$
\sum_{k} \frac{1}{a_{k}^{(i)}} \leq 1
$$

for all $i$. The reason that the bound $n-\frac{1}{30}$ was chosen was because of the example $a_{1}=2, a_{2}=a_{3}=3, a_{4}=a_{5}=\ldots=a_{5 n-3}=5$. Put another way, define $\alpha(n)$ to be the least real number so that if the $a_{k}$ satisfy (4) and

$$
\begin{equation*}
\sum_{k=1}^{t} \frac{1}{a_{k}}<n-\alpha(n) \tag{6}
\end{equation*}
$$

then the $a_{k}$ can be split into $n$ sequences $a_{k}^{(i)}, 1 \leq i \leq n$, so that

$$
\sum_{k} \frac{1}{a_{k}^{(i)}} \leq 1
$$

for all $i$. Thus, the conjecture in [28] was that $\alpha(n)=\frac{1}{30}$. In [49] it was shown by Sándor that $\alpha(n) \leq \frac{1}{2}$. This was improved by Chen [16] who shows that $\alpha(n) \leq \frac{1}{3}$. This in turn was followed by the paper of Fang and Chen [31] who prove that $\alpha(n) \leq \frac{2}{7}$. However, the original conjecture that $\alpha(n)=\frac{1}{30}$ was finally disproved by Guo [38] who showed that $\alpha(n) \geq \frac{5}{132}>\frac{1}{30}$. He shows that for the sequence $a_{1}=2, a_{2}=3, a_{4}=4, a_{5}=\ldots=a_{11 n-12}=11$,

$$
\sum_{k=1}^{11 n-12} \frac{1}{a_{k}}=n-\frac{5}{132},
$$

but for any partition of $\{1,2, \ldots, 11 n-12\}=\cup_{j=1}^{n} A_{j}$, there exists a $j$ such that $\sum_{k \in A_{j}} \frac{1}{a_{k}}>1$. At present, we have no guess as to what the truth is for this problem.

## 6. Concluding Remarks

We have tried to give a sample of the very many interesting questions and results that were inspired by Paul Erdős' interest in Egyptian fractions. Of course, this list is far from complete, and in fact the subject is still quite dynamic. For further references, the reader can consult [39], [28], [52] or [14], for example, and the references therein.

## REFERENCES

[1] M. H. Ahmadi and M. N. Bleicher, On the conjectures of Erdős and Straus, and Sierpiński on Egyptian fractions, J. Math. Stat. Sci., 7 (1998), 169-185.
[2] A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fib. Quart. 11 (1973), 429-438.
[3] P. J. van Albada and J. H. van Lint, Reciprocal bases for the integers, Amer. Math. Monthly 70 (1963), 170-174.
[4] E. J. Barbeau, Compute challenge corner: Problem 477: A brute force program, J. Rec. Math, 9 (1976/77), p. 30.
[5] E. J. Barbeau, Expressing one as a sum of odd reciprocals: comments and a bibliography, Crux Mathematicorum 3 (1977), 178-181.
[6] M. N. Bleicher and P. Erdős, The number of distinct subsums of $\sum_{i=1}^{N} \frac{1}{i}$, Math. Comp 29 (1975), 29-42.
[7] M. N. Bleicher and P. Erdős, Denominators of unit fractions, J. Number Th, 8 (1976), 157-168.
[8] M. N. Bleicher and P. Erdős, Denominators of unit fractions II, Illinois J. of Math. 20 (1976), 598-613.
[9] Robert Breusch, A special case of Egyptian fractions, solution to Advanced Problem 4512, Amer. Math. Monthly 61, (1954), 200-201.
[10] T. C. Brown and V. Rödl, Monochromatic solutions to equations with unit fractions, Bull. Australian Math. Soc. 43 (1991), 387-392.
[11] N. Burshtein, On distinct unit fractions whose sum equals 1, Discrete Math. 5 (1973), 201-206.
[12] N. Burshtein, Improving solutions of $\sum_{i=1}^{k} \frac{1}{x_{i}}=1$ with restrictions as required by Barbeau respectively by Johnson, Discrete Math. 306 (2006), 1438-1439.
[13] N. Burshtein, An improved solution of $\sum_{i=1}^{k} \frac{1}{x_{i}}=1$ in distinct integers when $x_{i}$ doesn't divide $x_{j}$ for $i \neq j$. NNTDM 16 (2010), 1-4.
[14] Paul Campbell, Bibliography of algorithms for Egyptian fractions (preprint), Beloit Coll., Beloit WI53511, U.S.A.
[15] J. W. S. Cassels, On the representation of integers as the sums of distinct summands taken from a fixed set, Acta Sci. Math. Szeged 21 (1960), 111-124.
[16] Y.-G. Chen, On a conjecture of Erdős, Graham and Spencer, J. Number Th. 119 (2006), 307-314.
[17] Y.-G. Chen and M. Tang, On the elementary symmetric functions of $1, \frac{1}{2}, \ldots, \frac{1}{n}$, Amer. Math. Monthly 119 (2012), 862-867.
[18] E. S. Croot III, On unit fractions with denominators from short intervals, Acta Arith. 99, (2001), 99-114.
[19] E. S. Croot III, On some questions of Erdős and Graham about Egyptian fractions, Mathematika 46 (1999), 359-372.
[20] E. S. Croot III, On a coloring conjecture about unit fractions, Ann. of Math. 157 (2003), 545-556.
[21] E. S. Croot III, Sums of the form $\frac{1}{x_{1}^{k}}+\ldots+\frac{1}{x_{n}^{k}}$ modulo a prime, Integers 4, (2004), A20 6.
[22] D. R. Curtiss, On Kellogg's Diophantine problem, Amer. Math. Monthly 29 (1922), 380-387.
[23] C. Elsholtz, Sums of $k$ unit fractions, Trans. Amer. Math. Soc. 353 (2001), 32093227.
[24] C. Elsholtz and T. Tao, Counting the number of solutions to the Erdős-Straus equation on unit fractions, arXiv:1107.1010 (53 pages).
[25] P. Erdős, Beweis eines Satzes von Tschebyschef (in German), Acta Litt. Sci. Szeged 5, (1932), 194-198.
[26] P. Erdős, Egy Kürschák-féle elemi számelméleti tétel általánosítása (Generalization of an elementary number-theoretic theorem of Kürschák, in Hungarian), Mat. Fiz, Lapok 39 (1932), 17-24.
[27] P. Erdős, Az $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}=\frac{a}{b}$ egyenlet egész számú megoldásairól (On a Diophantine equation, in Hungarian), Mat. Lapok 1 (1950) 192-210.
[28] P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Mono. No. 28 de L'Enseignement Math., Univ. Geneva (1980) 128 pp.
[29] P. Erdős and I. Niven, On certain variations of the harmonic series, Bull. Amer. Math. Soc., 51 (1945), 433-436.
[30] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85-90.
[31] J.-H. Fang and Y.-G. Chen, On a conjecture of Erdős, Graham and Spencer II, Disc. Appl. Math. 156 (2008), 2950-2958.
[32] Leonardo Fibonacci, Liber Abaci, translated by L. E. Sigler, Springer, New York, 2003 (first published in 1202).
[33] C. Friedman, Sums of divisors and Egyptian fractions, J. Num. Th 44 (1993), 328-339.
[34] Richard J. Gillings, Mathematics in the Time of the Pharaohs, 1972, MIT Press, Dover reprint ISBN 0-486-24315-X.
[35] R. L. Graham, A theorem on partitions, J. Australian Math. Soc. 4 (1963), 435441.
[36] R. L. Graham, On finite sums of unit fractions, Proc. London Math. Soc. 14 (1964), 193-207.
[37] R. L. Graham, On finite sums of reciprocals of distinct $n^{\text {th }}$ powers, Pacific J. Math. 14 (1964), 85-92.
[38] S. Guo, A counterexample to a conjecture of Erdős, Graham and Spencer, The Electronic Journal of Combinatorics 15.43 (2008): 1.
[39] R. K. Guy, Unsolved Problems in Number Theory, Third edition, Springer, New York, 2004, 437 pp.
[40] Chao Ko, Chi Sun and S. J. Chang, On equations $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$, Acta Sci. Natur. Szechuanensis, 2 (1964), 21-35.
[41] J. Kürschák. A harmonikus sorról (On the harmonic series, in Hungarian), Mat. Fiz, Lapok 27 (1918), 288-300.
[42] D. H. Lehmer, (personal communication).
[43] Greg Martin, Dense Egyptian fractions, Trans. Amer. Math. Soc. 351 (1999), 36413657.
[44] Greg Martin, Denser Egyptian fractions, Acta Arith. 95 (2000), 231-260.
[45] R. Nowakowski, Unsolved Problems, 1989-1999, Amer. Math. Monthly, 106, 959962.
[46] M. R. Obláth, Sur l'equation diophantienne $\frac{4}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}$, Mathesis 59 (1950), 308-316.
[47] Gay Robins and Charles Shute, The Rhind Mathematical Papyrus: an ancient Egyptian text, Dover, New York, 1987, 88pp.
[48] J. Sander, On $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ and Rosser's sieve, Acta Arith., 59 (1991), 183-204.
[49] C. Sándor, On a problem of Erdős, J. Number Th. 63 (1997), 203-210.
[50] C. Sándor, On the number of solutions of the Diophantine equation $\sum_{i=1}^{n} \frac{1}{x_{i}}=1$, Period. Math. Hungar. 47 (2003), no. 1-2, 215-219.
[51] C. Sándor, (personal communication).
[52] A. Schinzel, Erdős' work on finite sums of unit fractions, in Paul Erdős and His Mathematics, vol. I, Springer, Berlin, 2002, pp. 629-636.
[53] Sherman Stein, (personal communication).
[54] I. Shparlinski, On a question of Erdős and Graham, Archiv der Math. 78 (2002), 445-448.
[55] W. Sierpiński, Sur les décompositions de nombres rationnels en fractions primaires, Mathesis, 65 (1956), 16-32.
[56] B. M. Stewart, Sums of distinct divisors, Amer. J. Math. 76 (1954), 779-785.
[57] A. Swett, http://math.uindy.edu/swett/esc.htm (accessed on 12/8/12).
[58] R. C. Vaughan, On a problem of Erdős, Straus and Schinzel, Mathematica. 17 (1970), 193-198.
[59] M. D. Vose, Egyptian fractions, Bull. London Math. Spc., 17, (1985), 21-24.
[60] W. A. Webb, Rationals not expressible as the sum of three unit fractions, Elemente der Math. 29, (1974), 1-6.
[61] W. A. Webb, On $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$, Proc. Amer. Math. Soc. 25 (1970), 578-584.
[62] André Weil (personal communication).
[63] Wikipedia entry on the Rhind Papyrus.
[64] H. S. Wilf, Reciprocal bases for the integers, Bull. Amer. Math. Soc. 67 (1961), p. 456.

R. L. Graham<br>University of California, San Diego

e-mail:
7. Appendix: Some (Undated) Notes of Erdős on Egyptian Fractions

Graham and y peed some yeas wags the following question: Color the integer lo $k$ colors. Yes true that (1) ${ }_{(1)} \sum_{i} \frac{1}{x_{1}}=1, x_{1}=x_{2}<\cdots$
is monochromatically solvable? The sum (1) is of rune supposed to lo finite, lout the number of summand can be as large as MY plearc.

Let fix) be the largest integer for which them is a sequence $x_{1}+x_{2}<\ldots, x_{t} \leqslant m, t=f(n)$ which does not untain a solution of $(1)$. Trivially

$$
f(m)>m\left(1-\frac{1}{e}-\varepsilon\right)
$$

but perhaps $f(m)=m+\sigma(n)$. We veld not yet son trivial upper or lower hounds for $\&(n)$.

Fig. 2. Some notes of Erdős on Egyptian fractions

Let $x_{1}-x_{2}$.... have pritive upper dents was nit then follows that it ontaim a solution of (1). the if
(3) $\sum_{x_{i}=m} \frac{1}{x_{i}}>g(m)$
when dos (3) fore that $i \frac{t_{i} h_{i}}{}=1, \varepsilon_{i}=0$ or 1 shield le savable

German the following related problems an not without interest: Denote is $g_{s}(m)$ repp $g_{b}(m)$ the larizet net of integer $x_{1}<x_{2} \cdots<x_{t} \leqslant m$ for which all the news $\sum_{i=1} \varepsilon_{1 / x_{1}}\left(\operatorname{ress} \varepsilon^{\varepsilon_{1}\left(x_{i}\right)}\right.$
ar all distinct. Estimate $y_{\Omega}(m)$ rem $g_{\sigma}(n)$ as accurately as pumble. Ar Alow if $x_{1}<x_{2}<\ldots$ is an infinite requems and all the sums $\sum_{i=1}^{k} \varepsilon_{1 i_{1}}$ rem $\sum \sum_{i} x_{1}$ an all different how lati can $g_{\phi}(n)$ sen $g_{\delta}(m)$ bo for all $n$ ?

## AT\&T

## AT\&T Bell Laboratories

600 Mountain Avenue
Graham and I conjectured several years ago
600 Mountain Avenue
Murray Hill, NJ 07974-2070
Graham and comectured neveral years age Mosise2.300 that if we wow the integer by $k$ colon then

## $\sum_{i} \frac{1}{x_{1}}, x_{1}+x_{2}<\cdots$

is solvable monochromatically. (Yn(1) the sum in of route finite). Mon generally we unjectured that if we divide the integers into \&e Alar. thesis is $S_{r}, \quad 1 \leqslant r \leq k$, there is an $r r$ or that every rational $\frac{a}{x}$ ran lo written in the form
(2)

$$
\frac{a}{b}=\sum \frac{1}{x_{i}}, x_{1} \cdot x_{2}+\cdots, x_{i} F \varphi_{r}
$$

and the sum in (2) is of coupe finite. The slightly weaker wrjecture:(2) i shale monochromatically is also open. There attractive unjectures have pentax undeservedly neglected. Ne formulated several related publemes which we feel are also interesting. Set $f\left(r_{1}, m\right)$ be the molest integer for which if wo divide the integer $2 \leq t \leq s(r, m)$ mo r $r$ and estimate $f(r, m$
 as well as pourable. A further compluation if we divide the integer $2: t \leqslant f$. the mallet integer if it exists) for which if wo divide the sits. 2 t inter or lanes tho
(3) $\quad 1=\sum \frac{1}{x_{1}}, x \leq x_{1}<x_{2}<\ldots<x_{0}=f\left(r_{1} t_{1}, n\right), 3 \leq n \leq t$ mot exist e is solvable menourvomatially. Clearly for moth the mallet $t$ for whish f $12, t$ for $r^{r}=2$. acsham one could try to
exists.

Determine or estimate the mallet $g(m)$ or when trivially
(4)

$$
g(m)>m\left(1-\frac{1}{e}\right)+o(1)
$$

Fig. 4. Notes of Erdős on Egyptian fractions (while visiting Bell Labs)

We have no non-trivial upper or lower bound for gam) and could not decide if $g(m)>m-\sigma(n)$ holds.

The following Gremeridi type venalt could perhayn bold: Let $x_{1}$ < $x_{2} \cdots$ be a sequence of positive lower desists. Sh it then $t_{m}$ that

$$
\begin{equation*}
\tau=\sum_{i} \frac{\varepsilon_{i}}{x_{i},} \varepsilon_{1}=0 \text { or } 1 \text { (finite sum) } \tag{5}
\end{equation*}
$$

$\sum \frac{1}{x_{1}}$ is not enough for the nolvalility of (1), but perhaps it

$$
\frac{1}{\log \log m} \sum_{x_{i}<m} \frac{1}{x_{i}} \rightarrow \infty
$$

thaw ( 5 ) is alevays solvable. In fact let $h(m)$ be the mallet numb for which is

$$
\sum_{k_{k}=m} \frac{1}{x_{i}}>h(m)
$$

then (5) is solvable. Estimate $h(n)$ as well as pebble from alvere and below.

Several further related question would be pored, for further trial number thees, Monographic $\mathbb{N}^{\circ} 2 f$ de $\mathscr{L}^{\prime} \xi \mathcal{L}^{\prime}$ Enxignement Math. ale see some supers of Bleeper and intis which are refereed in our trot Let $m$ be the smallest meteger for whee is widevide the
 numbers of the meme cum. sues mot ever pere that m expo

Fig. 5. Notes of Erdős on Egyptian fractions (while visiting Bell Labs)


[^0]:    ${ }^{1}$ See [52].

[^1]:    ${ }^{2}$ This was memoralized by Leo Moser's limerick: "Chebyshev said it and I'll say it again. There is always a prime between $n$ and $2 n$."
    ${ }^{3}$ Interestingly, Erdős states in the German abstract of that paper:"Der Grundgedanke des Beweises besteht darin, dass ein Glied $a+k d$ angegeben wird, welches durch eine höhere Potenz einer Primzahl teilbar ist, als die übrigen Glieder. Dies ergibt sich aus der Analyse der Primteiler der Ausdrücke of $\frac{(a+d)(a+2 d) \ldots(a+n d)}{n!}$ and $\binom{2 n}{n}$ " (The basic idea of the proof is that some term $a+k d$ is divisible by a higher power of some prime than any other terms. This follows from the analysis of the prime divisors of the expressions $\frac{(a+d)(a+2 d) \ldots(a+n d)}{n!}$ and $\left.\binom{2 n}{n}\right)$.

[^2]:    ${ }^{4}$ As a historical note, this conjecture also occurred around the same time in a paper of Obláth [46] (submitted for publication in 1948) in which the constraint that the $x_{i}$ be distinct is relaxed.
    ${ }^{5}$ It is curious why Erdős and Straus didn’t make this conjecture in [27] as well.

[^3]:    ${ }^{6}$ For similar results using $n^{\text {th }}$ powers rather than squares, see [37].
    ${ }^{7}$ In fact, I don't know of any good conjectures here.

[^4]:    ${ }^{8}$ As it happened, Erdős did not live to see the solution. When I asked Ernie whether he would like a check for the $\$ 500$ signed by Erdős, he said he would pleased to be paid this

[^5]:    way. (I kept a number of checks pre-signed by Erdős for just such contingencies.) After sending Ernie the Erdős check, I subsequently sent Ernie a real check for $\$ 500$, which he certainly earned. However, unknown to me, Ernie cashed the Erdős check. That is, it was sent to my bank and it was honored. This was unexpected since Erdős never had an account at my bank! I am guessing that the bank tellers were so used to seeing Erdős' checks countersigned by me that they just assumed this was one of those and they cashed it. When I discovered this, I wrote to Ernie that he owed me $\$ 500$. He agreed to send back the $\$ 500$ overpayment but on the condition that I send him back the canceled Erdős check (which I did).

