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8.1 Introduction
In this paper I describe several problems I have worked on over the years which
are still mostly unresolved. This paper is based on a talk on this subject which I
presented at the 50th Southeastern Conference on Combinatorics, Graph Theory and
Computing held in Boca Raton on March 4 - 8, 2019.

8.2 Prologue
The lights are dimmed and the performer produces a deck of ordinary cards, He
casually removes the cards from the pack and gives them a few (Charlier) shuffles ∗.
He then wraps a rubber band around the shuffled deck and replaces them in the pack

∗Charlier shuffles, in spite of their appearance, just cyclically permute the deck.
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and throws the pack into one of the first few rows of the audience. The performer
then instructs the person holding the pack to remove the cards and the rubber band,
give the deck a cut and then pass the deck to his right. The person to the right is
instructed to do the same, and this continues until the deck has been cut 5 times.
Now the person holding the deck is instructed to remove the top card and pass the
deck to the person to his left. This person should then remove the top card and pass
the deck to the person to his left and so on, until five cards have been removed. The
performer now asks each card holder to concentrate on their selected card and he
will attempt to read their minds! After (apparently) struggling to receive clear mental
impressions of the selected cards, the performer suggests the the red cards (diamonds
and hearts) are harder for him to detect, and asks the people with red cards to stand.
Now, after a brief pause, the performer correctly names all the selected cards.

How is this possible? We explain in the next section.

8.3 Universal Cycles
At the 20th Southeastern Conference on Combinatorics, Graph Theory and Comput-
ing held in Boca Raton in 1989, the author presented a paper [9] (with Fan Chung
and Persi Diaconis) on what we called universal cycles for combinatorial structures.
Roughly speaking, these are ways of efficiently representing classes of combinato-
rial objects in the form of a cycle, with the various combinatorial objects appearing
uniquely as a “window” of fixed width moves around the cycle. A classic example
is that of the so-called de Bruijn cycle [10]. Here, the combinatorial objects are the
binary sequences of length n and of course, in this case the cycle must have length 2n.
For example, the cycle 00010111 is a de Bruijn cycle for binary triples and the cycle
0000111100110101 is a de Bruijn cycle for binary 4-tuples (where it is understood
that we ‘go around the corner’ with our moving window). It is well-known [16] that
the number of distinct de Bruijn cycles for binary n-tuples is 22n−1−n.

For our card trick, we use the following de Bruijn cycle for 5-tuples

00001001011001111100011011101010

In particular, our deck only has the 32 cards consisting of Ace through 8 of each
of the four suits. The deck is arranged in a very special order. First of all, the posi-
tions with 1’s will correspond to the 16 red cards so that if you know the red-black
arrangement of 5 consecutive cards, you know exactly where you are in the cycle.
More specifically, each 5-tuple a1a2a3a4a5 will correspond to a specific card accord-
ing to the following code. The first two digits a1a2 will encode the suit of the card
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using the following rules:

00←→♣
01←→♠
10←→♦
11←→♥

Similarly, the last three digits a3a4a5 will encode the rank of the card using the
following rules:

001←→ A

010←→ 2
011←→ 3
100←→ 4
101←→ 5
110←→ 6
111←→ 7
000←→ 8

where ‘A’ stands for Ace. For example the sequence 10100 denotes the 4 of diamonds
(=4♦). Thus, our 32-card deck arranged according the above de Bruijn cycle is

A♣ 2♣ 4♣ A♠ 2♦ . . . . . .8♦ 8♣

(going around the corner).
However, given that we know the card corresponding to the 5-tuple

xkxk+1xk+2xk+3xk+4, how do we find the next card? Of course, this is the card corre-
sponding to the sequence xk+1xk+2xk+3xk+4xk+5 (where indices are computed mod-
ulo 32). That is, how do we compute xk+5 from xkxk+1xk+2xk+3xk+4? Very simply!
We just use the rule

xk+5 ≡ xk + xk+2 (mod 2).

This generates a maximal length 31 shift-register sequence which will specify the
exact arrangement of our deck. The missing 5-tuple 00000 if formed by just inserting
a 0 next to the 0000.

Thus, if the red-card spectators form the 5-tuple 10100, then we know the first
(left-most) card is 4♦. Then the next digit must be 1+ 0 ≡ 1 (mod 2) so the next
card is 01001 = A♠, the card after that is 10011 = 3♦, etc. With a little practice, this
calculation can become routine.

Among the various universal cycles considered in [9] were those for the k-subsets
of an n-set. Here, we are looking for a cycle (a1a2 . . .aN) of length N =

(n
k

)
so that

each of the k-element subsets of the set {1,2, . . .n} occurs exactly once (in some or-
der) as {ai+1,ai+2, . . . ,ai+k} for some i.
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For example, 1234513524 is a universal cycle for 2-sets of the 5-set {12345} and
82456145712361246783671345834681258135672568234723578147 is a universal
cycle for the 3-sets of the 8-set {1,2,3,4,5,6,7,8}.

We observe the following:

Proposition 8.1 A necessary condition for the existence of a universal cycle U for
the k-subsets of an n-set is (

n−1
k−1

)
≡ 0 (mod k). (8.1)

Proof Consider the occurrence of some particular element x in the cycle U . It occurs
in exactly k different k-sets as the window of width k moves by. On the other hand,
there are just

(n−1
k−1

)
different k-sets of the n-set which contain x. This proves (8.1).

In [9], the authors made the following conjecture:

Conjecture 8.2 ($100) For each fixed k, (8.1) is also a sufficient condition for the
existence for a universal cycle for k-sets of an n−set provided n> n0(k) is sufficiently
large.

Partial progress has been made over the years by B. Jackson (n= 3) [27], G. Hurl-
bert (n = 4,5)[23] and others. However, in a very recent brilliant stroke by Glock,
Joos, Kühn and Osthus [17], Conjecture 8.2 has been fully proved, The proof, while
short, uses sophisticated applications of the probabilistic method and quasirandom
hypergraphs together with the recent breakthrough result of Keevash [28] (see also
[18]) on the existence of t-designs. Their proof should in principle be able to produce
universal cycles for k-sets of an n-set for any fixed value of k, e.g., k = 10. However,
I don’t believe this has happened yet.

Challenge 8.3 Count (or obtain good estimates) for the number of universal cycles
for k-sets of an n-set.

Since it wasn’t easy to show that there was at least one, this challenge will prob-
ably be rather difficult!

8.4 Combs
A variation on de Bruijn cycles considered in [1, 6] is to allow more general windows
as we go around the cycle. For example, suppose for k = 3, instead of three consecu-
tive positions we instead looked at positions 1, 2 and 5. We will call this the (1,2,5)
comb with teeth at positions 1 ,2 and 5. In this case, we can check that the cycle
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11100100 is a universal cycle for this modified window or comb. In other words, as
this window cycles around, we see all the binary triples 110,111,100, etc. In Table
8.1, we list the different combs with four teeth (up to rotational symmetry, reflections
and 0/1 interchange) which have universal cycles. All other combs have no universal
cycles.

Comb # of universal cycles
(1,3,5,7) 16
(1,2,3,4) 8
(1,2,3,8) 5
(1,2,4,15) 4
(1,2,3,7) 3
(1,2,4,5) 2
(1,2,4,8) 1
(1,2,4,10) 1

Table 8.1
Binary combs with 4 teeth

What in the world is going on? (See [1] for more details.)

Challenge 8.4 Characterize those combs which have at least one universal cycle.

Challenge 8.5 Count (or estimate) the number of universal cycles each comb has.

Of course, the same questions can be asked for universal cycles for alphabets
with more than two symbols.

In connection with our current topic, one can look for combs for k-subsets of an
n-set. We still have the necessary condition (8.1). It turns out, for example that for
the usual window for k = 3,n = 5, there are no universal cycles. However, with the
comb (1,2,6), there is a universal cycle 1212343545 (courtesy of Steve Butler [4]).
In fact, there are quite a few.

Challenge 8.6 Characterize those combs for k-subsets on an n-set which have uni-
versal cycles.

Challenge 8.7 Count (or estimate) the number of universal cycles for k-subsets of
an n-set each comb has.

Given that it took 30 years to show that there was even one universal cycle for the
(trivial) comb with k consecutive teeth, we suspect that these more general questions
will be rather challenging!
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8.5 The Middle Binomial Coefficient
(2n

n

)
Binomial coefficients have been the source of innumerable number-theoretic prob-
lems since they were first identified, which according to some accounts dates back to
the second century B.C. The questions we address in this section arose from a paper
by P. Erdős, I. Z. Ruzsa, E.G. Straus and myself [15] more than 40 years ago.

Let us begin by first looking at the first few middle binomial coefficients:

n
(2n

n

)
factorization

1 2 2
2 6 2 ·3
3 20 22 ·5
4 70 2 ·5 ·7
5 252 22 ·32 ·7
6 924 22 ·3 ·7 ·11
7 3432 23 ·3 ·11 ·13
8 12870 2 ·32 ·5 ·11 ·13
9 48620 22 ·5 ·11 ·13 ·17

10 184756 22 ·11 ·13 ·17 ·19

In general, the middle binomial coefficients tend to be highly composite. For
example, it is not hard to show that these coefficients are all even, and though harder
to show (but equally true!),

(8
4

)
= 70 is the last middle binomial coefficient which

is squarefree [22]. However, it can be seen by observing the table that there are
coefficients which are relatively prime to each of 3, 5 or 7. But how often can

(2n
n

)
be relatively prime to all three of 3, 5 and 7, such as

(20
10

)
= 22 · 11 · 13 · 17 · 19, for

example? Observing that 3 ·5 ·7 = 105, we state:

Conjecture 8.8 There are infinitely many n such that gcd
((2n

n

)
,105

)
= 1.

On the other hand, one could ask if the same behavior holds for the four primes 3, 5,
7 and 11? For example, it is not hard to see that the least odd prime factor of

(6320
3160

)
is 13.

Conjecture 8.9 There are only finitely many n such that gcd
((2n

n

)
,3 ·5 ·7 ·11

)
= 1.

In particular, the largest such n is 3160.

It is known [4] there are no such n with 3161≤ n < 1025000.
What is the motivation for our belief in these conjectures? Much of this rests on the
following well-known result:

Theorem 8.10 (E. Kummer (1852), [30]) The power of the prime p which divides(2n
n

)
is equal to the number of carries which occur when n is added to itself when n

is expressed in base p.
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In particular,
(2n

n

)
will be relatively prime to p if and only if all the base p ‘dig-

its’ of n are less than p
2 . We call these the small digits base p. So we can state an

equivalent conjecture to Conjecture 8.8

Conjecture 8.11 There are infinitely many n such that:

n base 3 uses only the digits 0 and 1,
n base 5 uses only the digits 0, 1 and 2,
n base 7 uses only the digits 0, 1, 2 and 3.

Example 8.12 Expanding n = 3160 to different bases, we find that 3160(3) =
10000111, 3160(5) = 21001, 3160(7) = 33121 and 3160(11) = 3142. Thus,

(6320
3160

)
is relatively prime to 3 ·5 ·7 ·11 = 1155, as claimed in Conjecture 8.9.

Here comes the heuristic. A large n has asymptotically logp n base p digits.
Hence, the probability that all these digits are small, i.e., less than p

2 , is roughly

(
p+1
2p

)logp n

= n
log
( p+1

2p

)
log p := n f (p),

where this is used for the definition of f (p). Therefore, assuming the expansions
to different prime bases are independent, the expected number of numbers less than
x which use only small digits in all the prime bases p1, p2, . . . , pr is given by the
expression

x1+
∑

i f (pi) = x1+
∑

i

log
(

pi+1
2pi

)
log pi . (8.2)

For the set of primes {3,5,7} we have x1+ f (3)+ f (5)+ f (7) = x0.02595.... This tells
me that we should expect infinitely many n to have gcd

((2n
n

)
,3 · 5 · 7

)
= 1. On

the other hand, for the primes {3,5,7,11}, we have the exponent 1+ f (3)+ f (5)+
f (7)+ f (11) = −0.22682 . . .. I interpret this as indicating that there should be only
finitely many n for which gcd

((2n
n

)
,1155

)
= 1. Computation seems to bear this out

(although 1025000 is still only 0 percent of the way to∞!). We can summarize these
beliefs in the following conjecture.

Conjecture 8.13 ($1000) Let P = {p1, p2, . . . , pr} be a set of distinct odd primes
and let F(P) = 1+

∑
i f (pi).

(a) If F(P)> 0 then there are infinitely n such that gcd
((2n

n

)
,
∏

i pi)
)
= 1.

(b) If F(P)< 0 then there are only finitely many n such that

gcd
((2n

n

)
,
∏

i pi)
)
= 1.

Actually, this is two conjectures so in fairness I should offer $500 for each
of them. However, I believe they are sufficiently difficult that I would gladly part
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with the full reward for a resolution of either (a) or (b)! What are some more
stringent tests of this conjecture? Well, for the set P = {7,11,13,17} we have
F(P) =−0.006185 . . . . The largest known n having gcd

((2n
n

)
,
∏

i pi)
)
= 1 is

987237571886409516564612292787298523778234008606963100480478235918624119.

There are no others after this below 103500. Presumably this is the last such n.

Even more delicate is the set P = {31,37,59,79,89,97}. For this set we have
F(P) = −0.00001139 . . . . According to Conjecture 8.13(b), there should be only
finitely many n satisfying gcd

((2n
n

)
,
∏

i pi)
)
= 1. However, computation has pro-

duced such n > 101200! †

What is known for this problem? In [15] it was shown that for any two primes p
and q, there are infinitely many n such that gcd

((2n
n

)
, pq
)
= 1. In fact much more is

true.

Theorem 8.14 [15] Suppose A and B are integers satisfying

A
p−1

+
B

q−1
≥ 1.

Then there are infinitely many integers whose base p expansion has all digits less
than or equal to A and whose base q expansion has all digits less than or equal to B.

Choosing A = p−1
2 ,B = q−1

2 gives the preceding result for two primes p and q.
Of course, there is a rich literature on arithmetic properties of binomial coeffi-

cients and in particular, the middle binomial coefficient. For example, see [14] for an
older reference, [2] for a fairly recent one and [32, 34] for very recent ones.

We close this section by mentioning one more problem from [15].

Challenge 8.15 Show that there are infinitely many pairs of middle binomial coeffi-
cients

(2m
m

)
,
(2n

n

)
which have the same set of prime divisors.

Examples of such pairs are
(174

87

)
,
(176

88

)
and

(1214
607

)
,
(1216

608

)
.

As Paul Erdős like to say, every right-thinking mathematician knows this must be
true but we are not yet at a stage where we can prove it.

8.6 The Steiner Ratio Problem
The Minimum Spanning Tree problem is a classic topic in combinatorial optimiza-
tion. Given a set of points in the Euclidean plane (or more generally, in some metric

†the ! symbol does not denote factorial here!
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space), it asks for the network connecting all these points together which has the
shortest total length. The names of J. Kruskal [29] and R. Prim [33] (both at Bell
Laboratories) are usually associated with the originators of efficient algorithms for
this problem. However, research indicates that O. Boruvka should be given credit
for this. (for a history of this problem, see [20]). In particular, it is an example in
which a simple greedy algorithm succeeds in constructing such a network. Namely,
just start adding edges in increasing order of length, except when a cycle is formed.
In that case, skip that edge and go on to the next shortest edge. Stop when a tree
(= acyclic connected graph) is formed. Since the shortest network will not contain
a cycle, the optimal network will always be a tree (for graph-theoretic terminology,
see [38]). The reason that this problem was of interest to researchers at Bell Labs
was because of the way that tariffs at that time were written for billing long-distance
customers. In particular, if a large company wanted to have a private long-distance
network connecting many locations, the company would be billed on the basis of the
length of the minimum spanning tree connecting these locations, not on the way that
the telephone company actually constructed the network. It was soon realized that a
company could create some imaginary locations so that the minimum spanning tree
for the augmented set of locations could be shorter that that of the original set! As
a simple example, if the original set of locations consisted of the three vertices of
a unit equilateral triangle, the minimum spanning tree would consists of two of the
sides of the triangle, and has total length 2. However, if we add the centroid of the
triangle as an additional point, then the length of the minimum spanning tree for the
enlarged set (joining the added point to each of the three vertices of the triangle) now
has length only

√
3.

These additional points are now called “Steiner” points, and the optimal network
obtained by adding (any number of) Steiner points is called the Minimum Steiner
Tree for the original set of points. (For a history of this problem, which dates back
to 1810, see [3]). For obvious reasons, it was of great interest to understand just how
much shorter the length of the minimum Steiner tree could be compared to the length
of the minimum spanning tree for any particular set of points. That is, if LSt(X) and
LM(X) denote the lengths of the minimum Steiner tree and the minimum spanning
tree for a set X , respectively, then what is a lower bound for LSt (X)

LM(X)? The best bounds
for pointsets X in the Euclidean plane evolved as follows:

• LSt (X)
LM(X) ≥

1
2 for X in any metric space (from antiquity);

• LSt (X)
LM(X) ≥

1√
3
= .5771 . . . for X in any Euclidean space

(1975) RLG /F. Hwang [20];

• LSt (X)
LM(X) ≥

1
3

(
2+2

√
3−
√

7+2
√

3)
)
= .7431 . . .

(1976) F. Chung / F. Hwang [8];

• LSt (X)
LM(X) ≥

4
5 = .8
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(1983) D. Z. Du/F. Hwang [12]

• LSt (X)
LM(X) ≥

4
5 = ρ0 = .8241 . . .

where ρ0 is a root of the irreducible polynomial x12 − 4x11 − 2x10 + 40x9 −
31x8−72x7 +116z6 +16x5−151x4 +80x3 +56x2−64x+16
(1985) F. Chung/RLG [7]

What is the best we could hope for here? A celebrated conjecture of E. N. Gilbert
and H. O. Pollak (from Bell Labs, of course) from 1968 asserts:

LSt(X)

LM(X)
≥
√

3
2

= .8660 . . . . (8.3)

This is what is achieved by the vertices of the equilateral mentioned earlier, so if true,
this would be best possible. Finally, in (1992), a proof of (8.3) was announced by Du
and Hwang [13]. However, several experts have now concluded [39, 25, 26] that the
proof in [13] is incomplete so it seems that the Gilbert-Pollak conjecture (8.3) still
stands, and that the best current bound is ρ0 = .8241 . . . mentioned above.

Challenge 8.16 ($1000) Prove (8.3).

One might wonder what the corresponding bound is for sets of points in Eu-
clidean 3-space. This is given by the following conjecture of Warren Smith and J.
MacGregor Smith [35]:

Conjecture 8.17 ($500) For any finite pointset X ∈ E3 we have:

LSt(X)

LM(X)
>

√
283−3

√
21

700
+

9
√

11−
√

21
√

2
140

= .78419 . . . .

You must admit that isn’t the first guess that comes to mind when thinking about the
problem (at least, for me!). No finite set X is known which achieves this bound but
there are sufficiently large sets which come arbitrarily close.

There is a substantial literature concerning the Steiner ratio for metric spaces with
different norms, such as L1 [24], Minkowski normed planes [11], etc. The reader can
consult [5] and the references therein for more sources.

8.7 A Curious ‘Inversion’ in Complexity Theory
It is known that the Euclidean minimum Steiner problem is NP-complete [19]. How-
ever, as we have seen, there are efficient (polynomial) algorithms for finding the min-
imum spanning tree for a set of points in the plane (and the same algorithm works in
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any metric space). However, from the point of view of complexity theory, this should
be phrased as a decision problem.

Input: A set X of points in the plane with integer coordinates, and a positive integer
L.

EMST: Does X have a spanning tree with length ≤ L?

The purported algorithm should answer YES or NO in time polynomial in the size of
the input. Amazingly, this problem is not even known to be in NP!

So how do you check if the sum of the lengths of the edges of a tree T is bounded by
L? The problem is that while the coordinates of T are integers, the lengths of the po-
tential edges are square roots of integers. Thus, the problem comes down to deciding
if a sum of n square roots of integers is bounded by some integer L. That is, we need
to check in polynomial time if the following holds:

n∑
k=1

√
mk ≤ L

Option 1. By repeatedly ‘transposing terms and squaring’ n times, we can get rid
of all the square roots. The downside is that after n squarings, our integers can have
exponential many digits!

Option 2. Approximate the square roots. The question then becomes one of knowing
how closely to approximate them.

Consider the following related problem:

Example 1. Let

A = {0,11,24,65,90,129,173,212,237,278,291,302},
B = {3,5,30,57,104,116,186,198,245,272,297,299}.

Then∑
k

√
1000000+ ak = 12000.9059482723022917534870728190449567268733681081168194090 . . . ,

∑
k

√
1000000+ bk = 12000.9059482723022917534870728190449567268733681081168194090 . . . .

Which sum is larger? (They are definitely not equal!) In principle, two sums of n
square roots could agree for exponentially (in n) many digits before diverging since
they represent algebraic numbers of degree 2n. However, I don’t think this can actu-
ally happen.

Challenge 8.18 ($10) Show that two sums of square roots of integers cannot agree
for exponentially many digits (measured by the size of the input).

Option 3. Something else. Consider the following example.
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Example 8.19 Let

P =
√

5+
√

22+2
√

5 = 7.3811759408956797266875465 . . . ,

Q =

√
11+2

√
29+

√
16−2

√
29+2

√
55−10

√
29 = 7.3811759408956797266875465 . . . .

Computation shows that P and Q agree in more than 500 digits. In fact, they agree in
more than 50000 digits! The reason: Because they are equal! This is not so obvious
(to me) at first glance. In fact, there are serious logical difficulties in proving that a
given mathematical expression is zero [36]. For example, is it true that

∞∑
n=1

(−1)n−1 H(2n)+4H(n)

n3
(2n

n

) − 2
75

π
4 = 0

where H(n) =
∑n

k=1
1
k is the well-known harmonic series? Nobody knows! (see

[37]).

Option 4. Quantum computing and AI? We’ll have to wait and see!

8.8 A Final Problem
Speaking of the harmonic series H(n), we close with one more problem. Let

∑
d|n d

denote the sum of the divisors of n.

Conjecture 8.20 ($1,000,000)∑
d|n

d ≤ H(n)+ eH(n) logH(n) (8.4)

for all n≥ 1 (where log is the natural logarithm).

Why is this reward so outrageous? Because this conjecture is equivalent to the Rie-
mann Hypothesis! A single n violating (8.4) would imply there are infinitely many
zeroes of the Riemann zeta function off the critical line <(z) = 1

2 (see [31]). Of
course, the $1,000,000 prize is not from me but rather is offered by the Clay Mathe-
matics Institute since the Riemann Hypothesis is one of their six remaining Millen-
nium Prize Problems [40].

We hope to live to see progress in the Challenges and Conjectures mentioned in
this note, especially the last one!
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