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On a conjecture of Erdos in additive number theory
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R. L. GragaM (Murray Hill, N.J.)

1. Introduction. Let ¢ and « be real numbers and let §;(a) denote
the sequence (s;,S,, ...) defined by s, = [ta"] (where [ ] denotes the
greatest integer function). It was conjectured by Erdos several years
ago that if £ >0 and 1 < a < 2 then every sufficiently large integer n

o
can be expressed as n = Zeksk where ¢, == 0 or 1 and all but a finite
k=1

number of the g, are 0. In general, a sequence of integers which has this
property is said to be complete and if every positive integer is so expressible
then the sequence is said to be entirely complete. While the additive struc-
ture of 8;(a) is far from being completely understood at present, it is
the object of this paper to shed some light on this question. In particular,
the set T of all points (f, @) of the unit square 8 = {(#,a): 0 <t <1,
1 < a < 2} for which S;(a) is complete will be determined. It will be seen
T has an area of approximately 0.85.

2. Preliminary remarks. If 4 = (a,, a,, ...) is 2 sequence of integers
then P(A) is defined to be the set of all sums of the form Z.skak where
k=1

e = 0 or 1 and all but a finite number of the g are 0. In this paper, we
b

adopt the convention that a sum of the form > is 0 for b < a. We now
k=u

give several results which will be needed later.

THEOREM 1. (J. Folkman.) Let A = (a,, a.,...) be a sequence of
positive integers such that:

1. an+a7z-|-1 < Gpys f07' n>=1.
2. There exist m = 0 and r > 0 such that m¢P(4) and

r

E A < m < a/7+2.
k=1

Then A is not complete.
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Proof. By hypothesis we have
r4-2 bl

i
pa ay, = Zak+ Up 1 Cppg <Mt Gy y < Op ot Gy < yyy.
k= k=1

r42
Therefore, m—+a,, ;¢ P(A) and Z << M+ Op y < Bp,. Since we can
k=1

now apply the same argument with m and r replaced by m+ a,, ; and
r- 2, respectively, then by induction on r we conclude that 4 is not com-
plete.

LemmA 1. Let A = (a;, a,, ...) be a nondecreasing sequence of posi-
tive wntegers. Then the following statements are equivalent:

1. A s entirely complete
2. For all n >0, Z ap = Gp 1 —1.

3. For all n >0, Zak>n.

ap<n

4. For all n = 0, @, ,—1eP(4).
Proof.1 = 4.: This is immediate.

4. = 3. If there is an n such that }' @, < n then there is a least
Ap=N

r such that a, >n. Thus,

t,—1 =n> Zak —Zak and hence a,—1¢P(A),

AP
contradicting 4.
M
3. = 2. If there is an = such that Y e, < a,.,—1, then Y a;
k=1 A=y 41

n
= M ay << @,,,—1 which contradicts 3.

2. = 1. Thisis aresult of J. L. Brown [1] and the proof of Lemma 1
is eompleted.

LEMMA 2. Let A = (ay, ay, ...) be a nondecreasing sequence of posi-
tive integers and suppose there exists an r such that:

n
1. Zak p—1 for 0 <m <.
2. Opyy <20y for m zr+1.
Then A is entirely complete.
Proof. For any ¢ > 0 we have

rre rie rye
§ ay = ak“— § Ay 2 Gpyp— 14 § (a'k-pl_a'k) = a’r‘;.c-{-l_l
Jo=1 ~:1 k=741 kE=t41

and hence by Lemma 1, A is entirely complete.
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We next state three lemmas whose proofs are immediate and will
be omitted.

LEMMA 3. If t >0 and o > (1+V5)/2 then
[ta" "] = [t ]+ [ta"]  for n>1.

LEMMA 4. Ift >0 and 1 < a < 2 then:
1. [ta"*'] < 2[ta™] for [ta"] > (a—1)/(2—a).
2. [ta"™'] < 2[ta"]+1 for n > 0.

Lemma 5. (1+2) >14yx for # > —1 and y >1 (cf. Korovkin
[2]).

3. The structure of 7. We first note that for 0 < ¢ < 1 and 1 <a< 2
we have

Syala) = ([tafa], [1*[a], ...) = ([t], [ta], [tc’], ...) == (0,[ta], [ta?], ...).

Thus, P(8y.(a)) = P(Sy(a)) and consequently if we can determine
P(8;(a)) for 1/a <t <1 then we immediately know P(S,(a)) for 0 <
t<<l. For 1/a <t<1 and 1 <a< 2 we have

1=1{afa] <[ta] =8, <[a] =1, ie, s =1.

TuworeM 2. If 0 <t <1 and 1 <a <35 then S,(a) is entirely
complete.

Proof. By the preceding remark, it suffices to prove the theorem
for 1/a <t <1, Thus s, =1 and s, = [ta®] < [65*°] = 2. Since 1a® <
a® < 5, then s, \4 The only possible ways that S,(a) can start are
as follows:

S(a) = (1,2,m,...) for m <4 (since s, < 4),

Si(a) = (1,1, m,...) for m <3 (by Lemma 4).

By Lemma 2, for s, =3 > (5"~ 1)/(2—-5"%) > (¢—1)/(2—a) we have
Spi1 < 28,. Thus, if k is the least integer such that s, > 3 then by Lemma 4

¥

we must have }'s; > $pp1—1 for 0 <7 < k—1. Hence, by Lemma 2, 8,(a)

i=1

is entirely complete for 1/a <t <1 and 1 < a < 5'3. Therefore S (a)
is entirely complete for 0 <<t <1 and 1 < « <5'® and the proof is
completed.

THEOREM 3. Suppose 0 <t <1 and 1 < a < 2. Then 8,(a) is com-
plete if and only if Sy(a) is entzrely complete.

Proof. As before it suffices to prove the theorem for 1 Ja <t < 1.
For 1 < a < 5'” this result is established in Theorem 2. Let 5% < ¢ < 2
and suppose S;(a) is not entirely complete. By Lemma 1 there is a least
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m such that 2 8; << m. Therefore m < s,,; < s,,, where s, is the great-

sp<m

est element of 8;(a) which does not exceed m. (Note that m¢P(S,(a))).

Since 1 =, eP(S(a)) then m >2, n >1 and s <m < $p,5. Bub
k=1

a > 5" > (1+V5)/2 and thus, by Lemma 3, 8,,5 = 84,18, for n > 1.
By applying Theorem 1 we see that S;(«) is not complete. Since an en-
tirely complete sequence is always complete, then the theorem is proved.

n
Now, let d, = s,,,—2s, for n >1 and let D, = Y d; for n > 0.
k=1
Lemma 4 implies that d,, < 1 while it is easily shown for n > 0 that s, —
n

— M. = 1+D,. For the following four lemmas we shall assume that
k=1

l/a <t<1and 1 <a< 2. From these lemmas the structure of 7' will
follow immediately.

LeMMA 6. S;(a) is complete if and only of D, <0 for all n = 0.
Proof. This follows at once from Theorem 3 and Lemma 1.
LEMMA 7. If d, < —2 then d,,x <O for all k > 0.

LemMA 8. If dy = — 1 and d, .y <0 then d,,; <O for k = 3.
Lemma 9. If d, = —1, dypy =1 and dy,y <O then.d, ;, <0 for
k>4.

The proofs of these lemmas are straightforward and we shall give
only a proof of Lemma 8, which is typical.

Proof of Lemma 8 By hypothesis we have s,,, = 2s,—1.
If d,,, = 0 then s,,, = 2s,,, = 4s,—2. Thus,

ta" " < syt 1 = 4s,—1 < 4ta"—1

and
(1) o < 4—1[ta”.

If dpy < —1 then s,,, <2s,,,—1 = 48,—3. Thus,

1" < $p+1 <48,—2 < 4a"—2

and
(1" o < 4—-2[ta".

Now suppose there exists & > 3 such that d,.;, = 1. Then
(2) fo A Z Spikp1 = 28n+k+1

> ("t —1)+1 = 2ta"F—1.
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nik

Hence a >2—1/ta"*" and consequently, by Lemma 5,

@ > (2—1 [t *)? = 4(1—1/2a™tF)?
> 4(1—2/2a™*) = 4 — 4 [ta™F.

There are two ecases:
(i) If d,,, = 0 then by (1) we have

1 4

4= >

and therefore «* < 4. Since k > 3, then «* < ¢ < 4 and by (2) we have
4> a® > 8(1—1/2ta""*)® > 8(1—3/2ta™").

Hence s, <ta"t* < 3. This is impossible however since k >3 and
s, = 1 imply
Sp ik 2= Sppz > 28,,,—1 =28s,—D =3

(since by Lemma 7 we cannot have d,, , < —2 and d,., — 1) and case
(i) is completed.
(ii) If d,,; < —1 then by (1) we have

4

2
Y

and therefore of < 2. Since k > 3, then o® < o* < 2 and by (2) we have
2> o > 8(1—1/2ta"*)P = 8(1—3/2ta"%).

Hence ta"** < 2. But d,., =1 implies s,,;,; = 28, :+1 > 3. Thus
2a > """ > 3 and therefore « > 3/2. However, this contradicts the
previous conclusion that o® < 2 and case (ii) is completed.

Thus, we have shown that there cannot exist » > 1 and k = 3 such
that d, = —1, d,,; <0 and d,,; > 0. This completes the proof.

‘We can now prove the basic

THEOREM 4. Suppose ljla <t <1 and 1 < a<<2. Then 8i(a) s
not complete if and only if for some n = 0 one of the following holds:

1.d, =1, d,, =0 for m <n.
2. d, = _17 dn+1 :17 dﬁ-}-? :17 dn =0 fO’I‘ wm < h.
3.d, = —1,d,,, =1, dy,, =0, dy.3 =1, d,, =0 for m <n.

Proof. This theorem follows at once from I.emmas 6, 7, 8 and 9
by considering the first occurrence of a nonzero d.
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Let A4,, B, and C, denote the sets of all points (¢, a) of the i—a
plane for which 8;(a) falls into cases 1, 2 and 3, respectively, of Theorem 4.
These sets are characterized by the following theorem.

THEOREM 5. (I). (t, a)ed, if and only if
1. ta" < 2" 141,
2. ta™t > 2" 1.
3.1<a<2.
4. 1ja <t < 1.
( I) (t, a)eB, if and only if
1. ta"+ < 2",
2. ta" = 2",
3. ta"t? > 2" -1.
(ITD). (t, a)eC,, if and only if
ta" < 2",
ta" < 2" 1,
t > 93,
> on1,
Proof (I). From the definition of 4, we know that (¢, a)eAd, if

and only if 1/a <t<1l,1<a<2,d,=1and d, =0 for m <n. In
this case we have

u;.oo.m»—a

Sy(a) = (1,2,2%,...,2% 1, 2" aml 1 )

and consequently to" < s,+1 = 2"7'+1 and ta"*' >s,,, = 2"+ 1 which
establishes the necessity of conditions 1-4. To show sufficiency assume
conditions 1-4 hold. Then o™ > 2"+ 1 implies ta* > 25" for1 <k < n.
Also from ta”" < 2" '4+1 we have (2" '+1)a > ta"™ = 2"-+1 and thus

2" 41 - on-lyr1 2" i1
2141 P | = 2m 341 -

o>

Therefore, ta* < 2141 for 1 <k <n. Finally, since fa" < 2" '+1
and ¢ < 2 imply to"*! < 2"+2 then from conditions 1-4 we see that
Sy(a) = (1,2,2%,...,2"1,2% 2" 11, ...) and consequently (f, a)ed,.
This proves (I). The proofs of (II) and (III) are quite similar and will
be omitted.

It is now an easy matter to relax the restriction 1/a < {¢. For any
0 <t<1andl< a< 2 there is a unique m such that 1/a <ta”™ < 1.
We have already noted that 8,(a) is complete if and only if Sgm(a) is
complete. Hence each sequence S;(a) for 1/a < ¢t < 1 which is not complete
generates a family of sequences S, n(a), m =1,2,..., which are not



Conjecture of Erdés 69

complete. Thus if we let AJ" denote the set {(¢/a™, a): (f, a)ed,} for
m=0,1,2 ... (so that A = 4,) with B™ and O™ defined simi-
larly then we have

THEOREM 6. Suppose 0 <t <1 and 1 << a <<2. Then Si(a) is not
complete if and only if
AN O BYY L oM.

9eJ, 04

”C8

The complement of this set with respect to the unit square § is just
the set T' of all points (¢, a) in § for which 8;(a) is complete. A portion
of T'is graphically represented in Fig. 1. It is not difficult to verify that
each of AG", B{" and C{" is nonempty and that the area of 7 is appro-
ximately 0.83.
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4. Concluding remarks. In general, it seems to be a difficult problem

to determine all the points (¢, a) with ¢ >1 for which 8;(a) is complete.
2 1+V5 ,)

It follows from Theorem 1 that S;(«a) is not complete for a > max ( P

On the other hand, it is not difficult to show that S;(a) is complete for
t =2 and a = 21/" (k an arbitrary integer). It would not unreasonable




70 R. L. Graham

to conjecture that S;(a) is complete for ¢ >0 and 1 < a < (1 +l/5)/2.
However, even for the case of t = (3/2)F and a = 3/2 it is not known
if any terms of S;(a) are odd for k sufficiently large.
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