ON QUADRUPLES OF CONSECUTIVE kth
POWER RESIDUES

R. L. GRAHAM

In a recent paper of D. H. and Emma Lehmer [2], the function
A(k, m) was defined (for arbitrary integers % and m) as follows:
Let p be a sufficiently large prime and let =7k, m, p) be the least
positive integer such that
rnr+-14,r+2,-- -, r+m—1
are all congruent modulo p to kth powers of positive integers. Define

Ak, m) = lim sup r(k, m, p).
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In [2] it was shown that A(k, 4) = » for #<1048909 and it was
conjectured that A(k, 4)=c« for all k. In this paper we establish
this conjecture with the following

THEOREM. A(k, 4) = =,

Proor. It suffices to prove the theorem for values of & which are
prime. The proof makes use of the following proposition which is a
special case of a result of Kummer [1] (see also [3]).

PropoSITION. Let k be a prime and let 1, - + -, Y. be an arbilrary
sequence of kth roots of unity. Then there exist infinitely many primes p
with corresponding kth power character x modulo p such that

x(P) = v 12isn,
where p; denotes the ith prime.

Thus, for any # and prime k, there exists a prime p with corre-
sponding kth power character x modulo p such that

x(2) # 1,
x(p) =1, 2Z2iZn

Now consider any four consecutive positive integers all less than p,.
It is clear that exactly one of these integers must equal 2(2d+1) for
some integer d. But we have

x(2(2d + 1)) = x(Dx(2d + 1) = x(2)-1# 1
since 2d+1 is the product of odd primes less than p,. Therefore
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2(2d+-1) is not a kth power residue modulo p. Since # was arbitrary
then A(k, 4) = . This proves the theorem.
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ON DECOMPOSITIONS OF PARTIALLY ORDERED SETS
E. S. WOLK

1. Introduction. Let P be a set which is partially ordered by a rela-
tion =. A decomposition D of P is a family of mutually disjoint non-
empty chains in P such that P=U{C: C€D}. Two elements x, y
of P are tncomparable if and only if x £y and y £x. A totally unordered
set in P is a subset in which every two different elements are incom-
parable. We denote the cardinal number of a set S by |S].

Dilworth [1] has proved the following well-known decomposition
theorem.

TueEOREM 1 (DiLworTH). Let P be a partially ordered set, and sup-
pose that n is a positive integer such that

n=max {| 4| : A is a totally unordered subset of P}.
Then there is a decomposition ® of P with| D| =n.

It is natural to ask whether, in this theorem, the positive integer n
may be replaced by an infinite cardinal number. However, the theo-
rem is no longer valid in this case, as is shown by an example in [3]
which is due in essence of Sierpinski [2]. In this example P is a set
of pairs which represents a 1-1 mapping from w, the first uncountable
ordinal, into the real numbers. (x1, ¥1) = (%2, ¥2) is defined by: x1Zx,
(as ordinals) and y; =<y, (as real numbers). The purpose of this note
is to show that a similar idea leads, given any infinite cardinal k, to
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