ON QUADRUPLES OF CONSECUTIVE kth POWER RESIDUES

R. L. GRAHAM

In a recent paper of D. H. and Emma Lehmer [2], the function $\Lambda(k, m)$ was defined (for arbitrary integers k and m) as follows:

Let p be a sufficiently large prime and let r = r(k, m, p) be the least positive integer such that

$$r, r + 1, r + 2, \cdots, r + m - 1$$

are all congruent modulo p to kth powers of positive integers. Define

$$\Lambda(k, m) = \limsup_{n \to \infty} r(k, m, p).$$

In [2] it was shown that $\Lambda(k, 4) = \infty$ for $k \le 1048909$ and it was conjectured that $\Lambda(k, 4) = \infty$ for all k. In this paper we establish this conjecture with the following

Theorem. $\Lambda(k, 4) = \infty$.

PROOF. It suffices to prove the theorem for values of k which are prime. The proof makes use of the following proposition which is a special case of a result of Kummer [1] (see also [3]).

PROPOSITION. Let k be a prime and let $\gamma_1, \dots, \gamma_n$ be an arbitrary sequence of kth roots of unity. Then there exist infinitely many primes p with corresponding kth power character χ modulo ρ such that

$$\chi(p_i) = \gamma_i, \qquad 1 \leq i \leq n,$$

where p; denotes the ith prime.

Thus, for any n and prime k, there exists a prime p with corresponding kth power character χ modulo p such that

$$\chi(2) \neq 1,$$
 $\chi(p_i) = 1, \qquad 2 \leq i \leq n.$

Now consider any four consecutive positive integers all less than p_n . It is clear that exactly one of these integers must equal 2(2d+1) for some integer d. But we have

$$\chi(2(2d+1)) = \chi(2)\chi(2d+1) = \chi(2) \cdot 1 \neq 1$$

since 2d+1 is the product of odd primes less than p_n . Therefore

Received by the editors December 29, 1962.

2(2d+1) is not a kth power residue modulo p. Since n was arbitrary then $\Lambda(k, 4) = \infty$. This proves the theorem.

REFERENCES

- 1. E. Kummer, Abh. K. Akad. Wiss. Berlin (1859).
- 2. D. H. and E. Lehmer, On runs of residues, Proc. Amer. Math. Soc. 13 (1962), 102-106.
- 3. W. H. Mills, Characters with preassigned values, Canad. J. Math. 15 (1963), 169-171.

BELL TELEPHONE LABORATORIES

ON DECOMPOSITIONS OF PARTIALLY ORDERED SETS

E. S. WOLK

1. Introduction. Let P be a set which is partially ordered by a relation \leq . A decomposition $\mathfrak D$ of P is a family of mutually disjoint nonempty chains in P such that $P = \bigcup \{C: C \in \mathfrak D\}$. Two elements x, y of P are incomparable if and only if $x \leq y$ and $y \leq x$. A totally unordered set in P is a subset in which every two different elements are incomparable. We denote the cardinal number of a set S by |S|.

Dilworth [1] has proved the following well-known decomposition theorem.

THEOREM 1 (DILWORTH). Let P be a partially ordered set, and suppose that n is a positive integer such that

 $n = \max \{ |A| : A \text{ is a totally unordered subset of } P \}.$

Then there is a decomposition \mathfrak{D} of P with $|\mathfrak{D}| = n$.

It is natural to ask whether, in this theorem, the positive integer n may be replaced by an infinite cardinal number. However, the theorem is no longer valid in this case, as is shown by an example in [3] which is due in essence of Sierpinski [2]. In this example P is a set of pairs which represents a 1-1 mapping from ω_1 , the first uncountable ordinal, into the real numbers. $(x_1, y_1) \leq (x_2, y_2)$ is defined by: $x_1 \leq x_2$ (as ordinals) and $y_1 \leq y_2$ (as real numbers). The purpose of this note is to show that a similar idea leads, given any infinite cardinal k, to

Received by the editors December 28, 1962.