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ABSTRACT

A pair of partitions 7, 7,, of a finite set S into disjoint non-empty subsets will be
called conjugate if for each s € S, the ordered pair (v, (s), v, (5)) determines s, where v,(s)
denotes the cardinality of the subset of 7, to which s belongs. In this note we show
that S has a pair of conjugate partitions if and only if the cardinality of S is not equal
to 2, 5, or 9. Partitions of this type provide a short solution to a problem arising in
circuit theory.

INTRODUCTION

Suppose we have a cable consisting of # indistinguishable wires with
terminals at two points 4 and B, and suppose for each terminal at A it
is desired to identify its mate at B. We shall assume that the only opera-
tions available for making such an identification are interconnecting sets
of terminals at one end and testing for current flow in the terminals at
the other end. For example, if all terminals at 4 are connected together,
then a current can flow between any two terminals at B. Without this
assumption, the desired identification would present no problem, since
if we denote the terminals at 4 by 4;, 1 <i <n (and similarly for B),
then we simply test to see if a current can flow between A4, and B,, 4, and
B,, . .., until we find a B; such that a current can flow between 4, and
B, and consequently we know 4, and B, represent the same wire. We
then use the same procedure on 4,, etc. For long cables, we shall restrict
ourselves further to procedures of the following type:
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Certain connections are made at 4. We then go to B and make tests
and, using the test results, certain connections. We finally come back to 4,
disconnect the connections initially made, and perform further tests.
The information now in hand should be enought to determine for each j
the terminal pairs 4; and B;, of wire j.

The following ingenious algorithum for solving this problem is due
to my colleague K. C. Knowlton. Before presenting the general solution,
a typical specific example will be given. Consider the case n = 6. Define
the partitions P: {1,2,3}, {4,5}, {6}, and P': {1,4,6}, {2,5}, {3},
of the integers {1,2,3,4,5,6}. If we let f(i) denote the number of
elements in the set of P which contains i and f'(i) the similar function
for the partition P’, then we have the table

i S@,f/@)

(3:3)
(3.2)
G.1)
(2.3)
(2,2)
(1,3)

We note that in the table all the ordered pairs ( (i), f'(i)) are distinct.
To identify the terminals in our cable of six wires we first label those
at 4 by Ay, Ay, ..., A; and connect them as shown in Figure 1(a).
We now test at B to decide which wires have been connected at A.

AN bW~

A B B B

A, x C, C
A, y C C,
A, X C. C,

N

A, X O G
A, z Ce Cs
Ag y Cs Cs
@ ® © @

FIGURE 1
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Suppose, for example, we find that we have the situation indicated in
Figure 1(b) where two wires with the same symbol are joined at A.
We label the x’s with C,, C, and C; (arbitrarily), the y’s with C, and C,
and the z with Cg, say, as in Figure 1(c). We next connect the terminals
at B together according to the partition P’, i.e., as in Figure 1(d). Finally
we go back to 4, disconnect the connections initially made there, and
test to decide how many wires a given wire at 4 has been joined to at B.
For example, suppose we find that wire 4, is now connected to exactly
one other wire at B. Since we know that initially 4, was in a set of three
wires which were connected at 4 and now it is in a set of two wires
which are connected at B and, since the pair of (f{(i), f'(i)) = (3,2)
occurs only for i = 2, then we can conclude that 4, must correspond to
C,. Similarly if it happens that A; is now connected to two other wires
at B (so that A4; belongs to a set of three wires which have been joined)
then A4; must correspond to C,, etc.

The general solution may be described in the following way. Let I,
denote the set of integers {1,2,..., n}. Suppose there exists a pair of
partitions of I, say P: P, Py, ..., P and P': P, P,, .. ., P;., such that,
if £(j) demotes the cardinality of the subsets P, which contains j (with
' (j) defined similarly), then the map j— (f(),f'(j)) is a 1 — 1 map-
ping of I, into I, X I,. We shall call such a pair of partitions conjugate.
For 1 < j < k, we first connect all wires together at 4 which have sub-
scripts that belong to the same P;. We then go to B and, by suitable
testing, determine the subsets Sy, ..., S; of the B, which have been
connected together at 4. We next relabel the B; by C}, G, ..., C,
so that for any S, the set of indices of the C; which occur in S, is exactly
one of the P;. Now we connect the C; together to form subsets 77,
1 <j=< K, in such a way that, for any j, the set of indices of the C,
which are in T} is just P;. Finally we go back to 4, disconnect all connec-
tions previously made there, and by suitable testing decide which 4,
have been connected at B. We are now in a position to determine which
labels represent the same wire. For if we take any wire, say 4,, we know
that at B it belongs to a T; which has, say, p elements (where we can de-
termine p). Since we also know the cardinality of the .5; to which 4,
belongs, say g, then, by the way the S; and T, were constructed and by
the hypothesis that all the pairs (p, ) = (f (u), f' (w)) are distinct, we
can determine the unique C,, and hence the B;, such that 4, and B;
represent the same wire.

It is the purpose of this note to prove that pairs of conjugate parti-
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tions exist for I, if and only if n =% 2, 5, or 9. We also give a simple con-
struction of a pair of conjugate partitions for I, for each n £ 2, 5, or 9.

SoME NECESSARY CONDITIONS

As usual let | 4 | denote the cardinality of the set A. IfP: P, P,, ..., P,
is a partition of I, let C(P) denote the set {| P, |, |[Py],..., | P |}
where we shall assume from now on that | Py [ < [Py | <--- < | P .

LeMMA 1. If P and P' are conjugate partitions of I, then | P, | = | Pi, |.

PROOF. Suppose | P, | = m. Since P and P’ are conjugate then C(P’)
must contain at least m distinct elements. Consequently | P{ | > m
(since we assume that | P, | <--- <] P |). Applying the same ar-
gument to P’ we see that | P, | << | Py | < | P, | and the lemma follows.

If P is a partition of I, for which there exists a partition P’ of I, such
that P and P’ are conjugate then we shall call P admissible.

LeMMA 2. If P is admissible and | Py, | = m then C(p) = {1, 2,...,m}.

PrOOF. Suppose there exists j such that 1 <j<<m and j & C(P).
Since | Pi, | = m by Lemma 1 then we must have | C(P) | = m (since P
is admissible). Therefore |P;|>m + 1, which is a contradiction.

LEMMA 3. Suppose P is admissible, | P, | = m and n; denotes the num-
ber of P; such that | P;| = j. Then n; < [m/j] (where [x] denotes the
greatest integer not exceeding x).

ProoF. Suppose there exists j such that n; > [m/j] and let P’ be a
partition of I, which is conjugate to P. Since reP,, s¢ P, and | P, |
= | P, | = j imply that f'(r) % f'(s) then we must have | C(P") | = j- n;.
But by Lemmas 1 and 2 (since P’ is also admissible)

m=|CP)[=|CP) =] -m=j(m/jl+1)>j-m|/j=m

which is a contradiction. This proves the lemma.
We combine these lemmas to obtain

THEOREM 1. If P is an admissible partition of I, and | P, | = m then
we have

_’E(_m_zj“__l_)_gng"n; ,-[L’?—}. )

j=1 J
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Proor. The left side of (1) follows from Lemma 2 since

Clp)=1{12,...,m}
implies that

n=lLl=1Pl e P2 2= 2D
The remaining part of (1) follows from Lemma 3 since

=, & . m
n=3j-n<X ][—-—] Q.E.D.
j=1 =1 J 1

If we let J(m) denote X, j[m/j] and A(m) denote [m(m + 1)]/2
then we have

A1) =1=JQ), 42) =3 <4=J(2), A43) =6 < 8 = J(3)

and
A44) =10 < A(m) for m> 4.

This shows that no admissible partitions exist for I,, I;, or I,

SOME SUFFICIENT CONDITIONS

THEOREM 2. If n satisfies Aim) < n << A(m + 1) — 2 for some posi-
tive integer m then there exist conjugate partitions of I,.

Proor. If we let r denote n — A(m), then 0 << r < m — 1. Consider
the following array:

m m—1 3 2 1 1 1
m X X X x
m~—1 x x x * X
: z x
3 X b
2 X
1 X
1 X
1
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A row (column) headed by j will be said to be ““open” if there are less
than j x’s in that row (column). By “projecting” an x of the array, we
shall mean deleting a particular x of the array, replacing it by * and plac-
ing a new x in the same row (column) and also in the first open column
(row). Note that projecting an x increases the number of x’s in the array
by 1. The “coordinates” of an x in the array are denoted by the ordered
pair (i, j) where i and j are the headings of the column and row, respec-
tively, to which x belongs. In the diagram, the x with coordinates
(2, m — 1) has been projected. The two new x’s formed have coordinates
(1, m — 1) and (2,1).

We now start with the original triangular array of x’s where we assume
that the number of rows which have a heading of 1 is » + 1 (and sim-
ilarly for columns). We next project the x’s which have coordinates
(jjm—j+Dfor2<j<min(r+ 1,m—1). If r=m— 1 then in
addition we place an x at the intersection of the last row and last column
(so that this x has coordinates (1, 1)). The new array now has A(m) + r x’s
in it and it is not difficult to see that with this construction each x has
a unique pair of coordinates. We form two partitions P and P’ of I, as
follows: Replace the x’s in the new array by the elements of I, (so that
every element of I, is used) in an arbitrary fixed way. For each column
(row) of the array, we form a subset P,(P,") belonging to the partition
P(P') by letting P,(P,") be the set of all the integers which belong to
that row (column). It follows that (f (), f' () is just the pair of
coordinates which j has in the array and consequently P and P’ are
conjugate partitions of 7,. This proves the theorem.

As an example of the above construction, let n = 13 = A(4) -+ 3.
We start with the array

4 3 2 1 1 1 1

— = = N W A
= X ® o=
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and project two x’s and add the extra x (since r = 3 = m — 1) to obtain

4 3 2 1 1 1 1
4 X X x
3 x X * x
2 x * x
1 x
1 x
1 x
1 x

We arbitrarily replace the x’s by the elements of I, to form

4 3 2 1 1 1 1
4 1 2 4
3 6 7
2 * 9
1 10
1 11
1 12
1 13

from which we generate the conjugate partitions of I 4:

P {4}, {7}, {9}, {13}, {3, 11}, 2,6, 12}, {1, 5,8, 10}
P': {10}, {11}, {12}, {13}, {8,9}, {5,6, 7}, {1, 2, 3, 4}.

The only n for which I, has not been shown to have conjugate
partitions are those of the form A(m) — 1 and, indeed, we have al-
ready noted that no such partitions exist for I, I;, or I, We fill this

gap with

THEOREM 3. If n = A(m) — 1 for m = 4 then there exist conjugate

partitions for I,.
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PrOOF. We start with the array

m—2
m—1 m—-2 --- 3 2 1 1 - 1 2
m—1 X b vt X X X
m—2 X X x x
: : x
3 X
2 x x
1 b
1
m—24 .
1
2

and project the x’s which have coordinates (j, m — j) for 2 < Jj<m-—2
Next we project the x at (3, m — 2) and place an additional x at the in-
tersection of the last row and column (so that it has coordinates 2,2)).
Note that the new points formed from the projection of the x at B,m—2)
have coordinates (2, m — 2) and (3,2) which are distinct from the
coordinates of any other x’s in the array (since m > 4 and the x which
was originally at (2, m — 2) has been projected). It is easily checked that
all x’s in the array have distinct coordinates so that by replacing the
x’s by the elements of 7, we can form conjugate partitions of I, and the
theorem is proved.

CONCLUDING REMARKS

It is interesting to note that, by extending the construction used in
Theorem 3, it is possible to form an admissible partition P of I, with
| Py | =m and n = J(m) thus achieving the upper bound derived in
Theorem 1. However, it is not clear that if »n is any integer such that
A(m) < n < J(m) then there exists an admissible partition of I, with
| P | = m. Since Lemmas 2 and 3 show that for any admissible par-
tition P with | P, | = m, we must have 1 < n; < [m/j] then it might
be conjectured that any partition P with 1 < n; < [m/j] is admissible.
This is not the case, however, as the following example shows. Let
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n =28 and choose Pso that ny; =1, n, =3, ny=2, n, =1, ny; = 1
and ng = 1. Suppose P’ is a partition conjugate to P and let F denote
{(f), £1(j): 1 < j < 28}. We shall derive a contradiction. Since the
pair (1,6) must belong to F then n,’ << 2 and n,’ = 1. But (6,3), (3,3),
and (2,3) € F so that neither (5,3) nor (4,3) belong to F. Hence (5,1),
(5,2), (5,4), (5,5), and (5,6) € F and therefore, since (6,4), (5,4), (3,4),
and (2,4) € F then (4,4) ¢ F. But we must have (6,2), (5,2), (3,2), and
(2,2) € F so that (4,2) ¢ F. Thus we have shown that (4,4), (4,3), and
(4,2) cannot belong to F which is 1mposs1ble Hence P is not an ad-
missible partition of L.

It may be shown that, by using this procedure, the maximum number
of circuit tests which must be made for the identification is essentially
2nlog, n. On the other hand, information theory arguments show that
the number of tests must be at least log, (n!) =~ nlog, n.

It should be remarked that the function

can easily be put into the equivalent form

Jm) =3 3 d

=1 dvj

In this form J(m) is recognized as a well-studied number theoretic func-
tion about which statements such as

2
J(m) ~ —17% m? -+ O(mlog m)

can be made (cf. [1]).
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