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In 1954, P. Tur4n [3] gave a proof of the identity
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which he said appeared without proof in a book of the Chinese mathematician
Le-Jen Shoo from 1867. This is equivalent to
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In one of the many successors to Turén’s paper T. S. Nandjundiah [2] noticed
that the Shoo identity is an instance of the following expansion of a product of
binomial coefficients, namely
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(the upper limit of the sum is supplied by the convention that (3) is zero if
a<0, b<0, or a<b). Let
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These numbers appeared in a study of a telephone traffic system with inputs
from two sources made by John P. Runyon and are known locally as Runyon
numbers; cf. J. A. Morrison [1]. It follows from (2) that
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a relation similar to (1). The natural question arising is: what is the general
solution of

2m

Since the recurrence (4) leaves x,, undetermined, this is the same as asking for
the coefficient Xi(n, m) in

(4a) Cum = 2 Xi(n, m)xs.
k=0
The answer is given by the following
THEOREM. If #=0,1,2,:--,m=0,1, - - -, n, and
m n+k
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with arbitrary Xes.

For a proof of the theorem, notice first that when Xu,="7nm, % =71= o,
with .. the Kronecker delta; hence
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Next, suppose that
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Then, by (2)
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while x4, =8,4; hence
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and the theorem is proved.
The theorem leads to binomial identities whenever a particular solution of

(4) (for which xkk#épk, p=0,1, .-, m)is known. Thus in the first instance
Xpm=qnm yields
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since ¢n, = 1.
A direct proof of this identity is as follows. First
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Next we have
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(the next to last step uses one form of the Vandermonde relation). Also
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which proves the identity.
Notice that
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which is equation (5) with %= (2k+1)7%; hence
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is a solution of (4) and
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A further result, which we do not take space to prove, is
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which is the x,, with xu =2k 1. Since sums and differences of solutions of (4)

or
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are also solutions, it follows that

A -0
Xnm = —— -
2 2m m
is the solution for which x.=Ek.
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ON THE TOTIENT FUNCTIONS OF JORDAN AND ZSIGMONDY
J. E. SHockLEY, University of Wyoming, AND R. J. HurseEy, Madison College

Introduction. K. Zsigmondy (see [2], p. 152) devised a function to deter-
mine the number of elements of a certain order in a finite abelian group.

In this note it will be shown that Zsigmondy’s function can be described
completely by use of Jordan’s totient function (see [2], p. 147). The proof is
elementary and is much simpler than the lengthy combinatorial proofs of the
formula found in the literature (see, for example, [1]).

I. In order to translate the problem into number-theoretic concepts, we
make the following definitions:

DEFINITION. Let n and k be positive iniegers. A k-tuple {al, g, » v, ak} of
positive integers is called a prime sequence for n (of length k) provided 1 La;Zn and
(a1, ag, » - -, ax, m) =1 (the parentheses denote the greatest common divisor).

DEFINITION. If n and k are positive integers, then Ji(n) denotes the number of
distinct prime sequences for n, each of length k. Jo(n) is defined to be zero.

DEFINITION. Let m, m, ng, -+ -, #, be fixed positive integers. An s-tuple
{a1, az, - - -, as} of positive integers is called a primitive sequence for m (with
respect to n1, © - -, Ny) provided
(1) 1§a2§n1 (1:=1) 2: Ty S) and
(2)  m is the smallest positive integer such that ma;=0 (mod #n;) (1=1,2, - - -, 5).

DEFINITION. If m is a positive integer then Y(m) =y (m; ny, na, - - -, #,) de-
notes the number of distinct primitive sequences for m (with respectto ny, n, « « + , 1,).

Thus if G is a finite abelian group with independent generators g1, gz, * * * , g
of order my, #s, - - -, #,, respectively, then ¥(m) is the number of elements of G
of order m.

I1. THEOREM. ¥ is ¢ multiplicative function.





