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ON n-VALUED FUNCTIONALLY COMPLETE
TRUTH FUNCTIONS

R. L. GRAHAM

Introduction. It is well known that the familiar Sheffer stroke function of the
2-valued propositional calculus is functionally complete (i.e., for any m, all 22"
truth functions of m variables can be defined! in terms of the stroke function).
Indeed, it is not difficult to show that of the 16 2-valued functions of two variables,
exactly two of them are functionally complete.

In this note we describe a rather large class of n-valued (n > 2) functionally com-
plete functions of two variables (cf. [1]-[12]). The proofs given are short, elementary
and self-contained.

Preliminary ideas. Suppose G is an n-valued truth function of two variables
p and ¢g. We shall denote the truth table of G by the linear notation

[G(0, 0), GO, 1),...,G(0O,n — 1),...,G(n — 1, n — 1)]

where we shall let the n-values that G and the variables p and g assume come from
theset I ={0,1,...,n — 1},

An important fact we point out here is that any truth function of m variables
can be defined in terms of truth functions of just two variables. To see this,? let
G(py, Pas - - -» Pm) be an arbitrary n-valued truth function of the m variables
D1s Das - - -» P and let us assume that all truth functions of m — 1 variables can be
expressed in terms of functions of two variables. Hence, for each i € I, the functions
G, = G(@, ps, ..., pn) can be formed from truth functions of two variables. For
i1, let J, denote the function defined by

Ji(p9q)=a if p=iqg=a,
= (0 otherwise
and let M be the function defined by

M(p,q) = max{p, q}.
Finally, let L, = L{(py, Pas . - .» Pm) denote the function Jy(py, G). It is then easily
verified that the truth table® of
n-1
e N—
MM ... MLyLy ... L,
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1 For a detailed discussion of this concept, see [6].

3 Cf. also [6].

3 Occasionally, we shall employ the Polish (parenthesis-free) notation of Lukasiewicz and
Tarski.
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is identical with that of G. This completes the induction step and since the cases
m = 1, 2 are immediate then the assertion is proved.

In view of this observation, in order to establish the functional completeness of a
truth function F, it suffices to show that all truth functions of two variables can be
defined in terms of F.

The main results. If G is an n-valued truth function of two variables, let 2(G)
denote the set of all truth functions of two variables which can be defined in terms
of G. Thus, if G is functionally complete, P(G) has cardinality »**. Of course, the
notation [ay, a,, . .., a;3] € P(G) will indicate that the function H with the truth
table [ay, as, . . ., a,2] belongs to P(G).

In order to define the truth functions with which we shall be concerned, we
introduce two mappings. Let o and = be arbitrary fixed mappings of I into I such
that for all ae I:

(i) 0 < r <n implies o"(a) # a (where o"(a) denotes the rth iterate
o(o(...0(a))...) with o‘“(a) = a).
Q-V—_J

r
(ii) There exists r > 0 such that #"(a) = 0.

Note that o is just a permutation of I which consists of a single cycle. Define the
function F, , by
F,, 4=°(a) if p=a, q=a,
=m@) if p=a#0,qg=0,
=0 if p=0, g=a#0,
and is arbitrary, otherwise.

The main result of this paper is the following

THEOREM. F, , is functionally complete.

Before proceeding to the proof of the theorem we make some remarks about the
notation and we prove a lemma. Abbreviate F, , by F and let S = {s, 5,,.. ., 5,}
be a subset of {1, 2,..., n%}. For b, € I, the notation [by, b, ..., b,]s € P(F) will
indicate there exists [ay, @, ..., a,2] € P(F) such that a, =b,forl <i<r.
Most of the time we shall be concerned with at most two of the r places in
[b1, by, . . ., b,]s, say b, and b, (with x < y) and we could write this in an abbreviated
form as [By, b,, B, b,, B;]s. However, in any particular argument given, S will be
fixed and the argument will be independent of which S and which x and y were
selected. Hence, we shall usually abbreviate [b,, b,, .. ., b,]s just by [b;, b,, B] (or
even [by, B]). Of course, by [by, by, e*'(B)] we mean [by, by, 6®(b3), . . ., a®(B)].

The following simple lemma will be useful.

LEMMA. Let S ={s;,...,8} ={1,2,...,n% be nonempty. If [0, Blse P(F)
and [0, o(B)])s € P(F) then [0, ¢*(B)]s € P(F) for all k.

Proor. Since [0, B]€ P(F) by hypothesis (dropping the subscript S), then
[¢(0), o(B)] € P(F). (The argument in detail for this assertion runs as follows: By
hypothesis for [0, Bls = [by, bs, ..., b]s € P(F) there exists a truth function
G € P(F) with truth table [a,, ..., a,2] such that a, = b, for 1 <i < r. Hence, the
truth function FGG e P(F) has the truth table [o(ay),..., o(a.e)]. Therefore
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[6(®y), . . ., a(b)]s = [0(0), a(B)]s € P(F). (In general it will be our policy to omit
the details in an argument of this type.) Since we have also assumed that [0, o(B)] €
P(F) then we now have [0, o®(B)] € P(F) (because a(0) # 0). To see this, we ob-
serve that if [0, c*~1(B)] € P(F) and [0, c®(B)] € P(F) for some k > 1 then
[¢(0), s*(B)] € P(F) and hence

F0, 0®(B)}[e(0), o**(B)] = [F00(0), Fo*(B)o™(B)]
= [0, 0**V(B)] € P(F).

By continuing this argument the lemma is proved. We now present the

ProoF oF THEOREM. For a € I, let 5, denote the least nonnegative integer x such
that 0®(a) = 0 and let , denote the least nonnegative integer x such that 7(a) = 0.
For k satisfying | < k < n? let (4,) denote the statement:

(4,) For any subset S < {1,2,...,n?% of cardinality k and any b€, 1 < i < k,
[bs, ..., bils € P(F).

The proof will proceed by induction on k.

To establish (4,) we note that for any S < {1, 2,..., n*} and any b € I, we must
have [z]s € P(F) for some z € I and hence [0¥(2)]s = [b]s € P(F) for some i (by the
definition of ¢). This proves (4,).

Now assume that (4,) is true for some fixed k, 1 < k < n?. Suppose also that
there exists an S = {1,2,...,n%} of cardinality k + l and hye, 1 <i<k + 1,
such that [by, ..., by, 1ls ¢ P(F). We shall derive a contradiction.

Case 1. Suppose there exist i; # i, such that b, = b,,. Without loss of gener-
ality, we assume that iy = 1, i, = 2 and b, = b, = b (since the arguments will
not depend on #; and i,). Thus, we are assuming there exists

[bs b, b39 ey bk+1]s = [b’ b, B] ¢P(F)
where B denotes the b, 3 < i < k + 1 (possibly empty).

Case 1.1. Suppose there exists an m such that
[0, 0, 0™(B)] € P(F).

Case 1.1.1. Suppose [0, 0, o+ (B)] € P(F). By (a slight modification of) the
lemma we have [0, 0, o”(B)] € P(F) for all i. Therefore [0®(0), *)(0), B] € P(F)
for all i. Since ¢*”(0) = b for some j then we have a contradiction to Case 1.

Case 1.1.2. Suppose [0, 0, o™ *1(B)] ¢ P(F).

Case 1.1.2.1. Suppose there exist x,y # 0 such that [x, y, "™(B)] € P(F).
Thus,

F[0, 0, o™(B)][x, y, ™ (B)] = [FOx, F0y, Fo™(B)s"(B)]

= [0, 0, o *(B)] € P(F)
which contradicts Case 1.1.2.
Case 1.1.2.2. Suppose for all x, y # 0, [x, y, o™(B)] ¢ P(F). By the induction
hypothesis there exist o, 8 € I such that [0, ¢, o™ *V(B)] € P(F) and [B, 0, o™+ (B)] e
P(F). Therefore [o*~Y(B), o~ V(0), 6™(B)] € P(F). Since o»~(0) # O then by
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Case 1.1.2.2 we must have ¢*~1(8) = 0, i.e., 8 = o(0). Similarly we must have
o = o(0). We can write
[0, @, o™ *2(B)] = [0, ¢(0), o(o™(B))] = [0, o(4)]
and since we know
[0, 0, c™(B)] = [0, A] € P(F)

by Case 1.1, then the lemma implies [0, 0“)(4)] € P(F) for all i. Therefore
[¢*(0), 4] € P(F) for all i. But for some i,, 0%)(0) = #"s ~(B) (this is well defined
since B # 0). Consequently [0%(0), A] = [#"s~1(B), 0, c™(B)] € P(F). On the
other hand [8, 0, o™ *1(B)] € P(F) implies

[~ 1(8), o~ 1(0), o +™(B)] = [0, "~ (0), o™(B)] & P(F).
Thus,
F[,n.(r, —1)(ﬂ), 0’ O(M)(B)] [0, o(n—l)(o)’ a(m)(B)] - [,”(r,)(p), 0’ o(m+1)(B)]
= [0, 0, o'**(B)] & P(F)
since 0 # o~ 1(0) and #“2’(8) = 0 by definition. This is impossible though, since
it contradicts Case 1.1.2,

Case 1.2. Suppose for all m, [0, 0, o*"(B)] ¢ P(F). By the induction hypothesis
there exist « and B eI such that [0, o, B] € P(F) and [B, 0, B] € P(F). Thus, we

have:
[0, 7(e), o(B)] € P(F), [=(8), 0, o(B)] € P(F),
[0, 7®(), o®(B)] € P(F), [»?(B), 0, ¢**(B)] € P(F),

[0, 7%(a), (B)] € P(F),  [#¥(B), 0, *(B)] € P(F).

We can continue this argument until, for the first time, i reaches one of the values
T4, rs. When this happens, say for r, first (the argument for r, is identical), we have

[0, 7"(«), 0"«X(B)] = [0, 0, "=)(B)] € P(F)

which contradicts Case 1.2. We are left with
Case 2. Suppose b( #* bj for i ";éj. Let us write [b19 bz, eoey bk+1]S as [ﬁ, B].
Since we are assuming [8, B] ¢ P(F) then we must have

[0®2(B), 6“(B)] = [0, o“~(B)] ¢ P(F).

By the induction hypothesis there exists « € I such that [«, 0“2’(B)] € P(F). (Note
that « # 0.) Consequently,

[0%a)(c), 0% *2a)( B)] = [0, c“*%)(B)] € P(F).

Let ¢ be the greatest integer <n for which [0, 0¢*+%)(B)] € P(F). We note that
1 <5, <t <nand [0, 0¢*1*%(B)] ¢ P(F).
Case 2.1.  Suppose there exists z # 0 such that [z, o**+%)(B)] € P(F). Then

F[0, o***(B)][z, o***(B)] = [0, o**1+2(B)] € P(F),

which is a contradiction.
4—j.s.L.
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Case 2.2. Suppose that for all z # 0, [z, o¢*%)(B)] ¢ P(F). If we write
[z, c®*58)(B)] as [z, ¢, . . ., Cx+1] then the ¢, are distinct (since the b, are). However,
if [z, ¢g5 -+« Ck 41} € P(F) for all z # O then all the ¢, must be 0 (since by Case 1, we
know that for all S of cardinality ¥ + 1 and all ¢;eI, 1 < i < k + 1, such that
a; = a,; for some [ # j, we have [ay, as, ..., Gx+1]s € P(F)). Hence we must have
k=1andcy =0.

Let us take stock of what has been established thus far. Assuming (4,), we have
shown that if there exists an S = {1, 2, ..., n%} of cardinality k¥ + 1, and g, €],
1 <i<k+ 1,suchthat [a,...,a;,.1) ¢ P(F) then k = 1 and [z, 0], ¢ P(F) for
all z # 0. However, this is impossible. For suppose S = {t,, t;} and let p; and ¢,
denote the values of the variables p and g, respectively, at the #,th position, i = 1,2.
(Explicitly we have p, = [t,/n] and g = t; — np; where [x] denotes the greatest
integer < x.) Since [py, p.]s € P(F) and [q,, ¢.]s € P(F) then

[0%2(p1), 0%2(p)]s = [0“»2(py), 0]s € P(F)

[0%2(q1), 0%%2(g)]s = [0%aX(q1), O]s € P(F).

But at least one of o%»(p;) and ¢%.(g;) is not O since either p; # p; or gy # g,.
Thus, for any S = {#;, £}, there exists z # 0 such that [z, 0] € P(F), and the
contradiction to Case 2.2 is established. This concludes Case 2. We have shown
thatif 1 < k& < n?and (4,) holds then (4, ;) holds. This completes the induction
step and the proof of the theorem.

and

Concluding remarks, It is easy to enumerate the number of distinct F, , we can
form. Since in the definition of  the choice of #(0) does not affect F, , then there
is a 1:1 correspondence between possible mappings = and labeled rooted trees with
n distinct points (with the root labeled 0). Hence, there are n*~2 choices for =
(cf. [S]). There are (n — 1)! choices for o. Of course, there was nothing signifi-
cant about the choice of 0 in the definition of F (i.e., we could have used ““for all
ael, #9(a) = 1forsome x, Fla = 1fora # 1,...” etc.). Hence, if T(n) denotes
the number of n-valued functionally complete truth functions of two variables,
we have shown

T(n) > n*~2".p!

On the other hand, it is certainly necessary for F to be functionally complete that
for each a€ I, Faa # a. For such an F, there are n — 1 choices for Faa for each
a € I. Hence there are exactly (n — 1)*-n* ~" such F and we have

Te) < (1 = e n = (1= )

Consequently, for any & > 0, if # is sufficiently large then T'(n) < (1 + &)/e)n™.
The lower bound given for T(n) is almost certainly quite far from best possible
and, in fact, it may be true that T(n)/n™ is bounded away from 0. It is known
(cf. [1], [2]) that

T(2) =2, T(3) = 3774.
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At this point it is tempting to conjecture that if for any 2-subset S = {#;, t;} <
{1,2,...,n% and any distinct @, b € 1, it is true that [a, b]s € P(F), then F is func-
tionally complete.

I wish to acknowledge here my gratitude to Alfred Bork for many stimulating
discussions on this topic.
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