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ABSTRACT

If M is a maximal (proper) subsemigroup of a finite semigroup S, then M contains
all but one #-class J(M) of S. When J(M) is non-regular J(M) N M = ¢ so
M = § — J(M). When J(M) is regular either M)\ M = ¢ or M N J(M) has a
natural form with respect to the Green-Rees coordinates in J(M). Specifically, there
exist an isomorphism j : J(M)® — .#%4, B, G, C) of J(M)® with a Rees regular matrix
semigroup so that j(M N J(M)) =G’ X A X B, where G’ is a maximal subgroup of G or
J(M M J(M))is the complement of a “rectangle” of # -classes of .#%A, B, G, C). In the
first case, (M N J(M))® is a maximal subsemigroup of J(M)". In the second, (M N J(M))°
is maximal in J(M)° when j(M N J(M)) = .#%4, B, G, C) — (G x A" x B’)for proper
subsets 4” and B’ of 4 and B, respectively, but need not be when j(M N J(M)) =
GXAXBorjlMnJM))=Gx A x B.

The notation of this paper, with slight variations, follows [I].
AM%A, B, G, C) denotes a Rees matrix semigroup with finite index sets
A, B, finite group G and C : B X A — G° the structure matrix. If J is a
H#-class of a semigroup S, we denote by J° the semigroup J U {0}, 0 ¢ J,
with multiplication

.. \ides if jij.€J,
J17/2 =00, otherwise.

We use the notation | X'| for the cardinality of the set X. By a maximal
subsemigroup M of a semigroup S we mean a proper non-empty subsemi-
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group M of S such that, whenever M C T C S for some subsemigroup
Tof S, wehave M = Tor T =S. '
1t is the purpose of this note to prove the following:

ProrosITION. Let M be a maximal subsemigroup of the finite semi-
group S. Then

(1) For some #-class J(M) of S,
S — M C JM).

(2) M meets (intersects non-trivially) each s#-class of S, or M is a
union of s#-classes of S.

(3) If J(M) is non-regular then JIM)N M = ¢, so M =S — J(M).

@) If M N J(M) # ¢ (so J(M) is regular by (3) and J(M)® is isomorphic
to a regular Rees matrix semigroup) two cases arise from the two
possibilities in (2).

Case 1: If M meets each #-class of S then an isomorphism
j: J(M)® — MA%A, B, G, C) can be so chosen that

JIMNJIJM)) =G, X A X B,

where G, is a maximal subgroup of G. In this case, (M N J(M))* is a
maximal subsemigroup of J°.

Case 2: If M is a union of s#-classes of S, then an isomorphism
j:JM)P® — #%A, B, G, C) can be so chosen that j(M N J(M)) is the
complement of a “rectangle” of #'-classes of #%A, B, G, C). Precisely,
j(M N J(M)) has one of the following three forms:

(a) G x (4-A") X B, A’ a proper non-empty subset of A4,

(b) G x A X (B-B’), B’ a proper non-empty subset of B,

(©) (Gx AX B)—(G x A X B'), A', B proper non-empty subsets
of A and B, respectively.

In Case 2, (M NJ(M))® is a maximal subsemigroup of J(M)° if
J(M N J(M)) has form (c) but need not be in the other two cases.

Proor: For (1), let J be minimal (in the usual ordering J; < J, iff
S1/,8t C §WJ,SY) among the #-classes of S not contained in M. Then
M U Jis a subsemigroup of S properly containing M, so that M U J = S.
Thus S — M C J = JM).

For (2), let J = J(M). Define M’ to be the union of all s#-classes that
M meets. We will show M’ to be a subsemigroup of S containing M, so by
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the maximality of M, either M’ = M or M’ = S. The former implies M
is a union of #-classes; the latter shows that M meets every s#-class of S.

To show M’ a subsemigroup, let k, , hy € M’. If hyhye M C M’, done;
so suppose not. Then hh,eJ and at least one of h,, h,€J. By the
definition of M’, there exist m, , m, € M such that h,5¢m, ,i = 1, 2. There
are two cases:

Case 1: Suppose h e M, hyeJ. Since (by assumption) hh,eJ,
left multiplication by A, moves the 5# class containing /4, onto the #-class
containing /yh, . (See [2]) Thus h#m, implies hh,5#hmsc M, so
hhy e M'. (The case hy € J, hy, € M is handled dually.)

CAse 2: Suppose h, , by, € J. Then using the Rees Theorem, h,5¢m, ,
i = 1,2 implies hyh,#mm, € M, so hh, € M'. This exhausts the possi-
bilities, so M’ is a semigroup and (2) is proved.

For (3), let J = J(M). We first recall that J° is null (i.e., (J%? = {0})
iff Jis non-regular. See [1]. Let J°be null and let n, , n, € J. Then n; = s5y71,5,
for some s, , 5, € S! by the definition of £, and s, , s, ¢ J, since, by the
definition of null, the product of two or more elements of J is in STJS* — J.
Thus, s, , 5, € M?, so that n, € M implies n, € M. Hence J N\ M = ¢.

For Case 1 of (4), assume that M meets every #-class of S.
Let j° be an isomorphism of J° onto T = .#%4, B, G, C’). See [1}.
Then T; = j'(M N J)® is a subsemigroup of T meeting each J#-class
H(a,b) = (G, a,b) = {(g,a,b): g G}. Let

T, N H(a, b) = M(a, b) = (X(a, b), a, b) = {(x, a, b) : x € X(a, b) C G}.

Now let H(a,,b,) be a fixed non-zero #-class of T for which
8o = C(by, ay) # 0, i.e., H(ay, by) is a subgroup of T isomorphic with G
under the isomorphism (g, g, , b;) — g,¢. Then

X(ay, by) = {&5'8 : 8 € G} = &G,

for some subgroup G, of G, since M(qa, , b,) is a subgroup of T contained
in H(a, , by). For each a € A, let g, be a fixed element of X(a, b,) and for
each b € B, let y, be a fixed element of X(a,, b). Then

(8a > a, by) M(ay , bo)(ys , ay , b) = (8.G180¥5 > a, b) C M(a, b)
= (X(a, b), a, b).

But by a similar argument there exist elements ¢, , 7, € Ty such that

tM(a, by t, C M(a,, b)) = (X(a,, by), ay , by)
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SO
| X(a, b)l = | X(ao, bo)l = | G1 | = | 8.G18oYs |-

Foreachbe B, let h, = gyy, . Then X(a, b) = g,Gyh, . Let C: B x A - (°
be the matrix given by

Cb, a) = hC'(b, a) g, -

Then #%A4, B, G, C’) is isomorphic with .#%A4, B, G,C) by the
isomorphism j, : #%A4, B, G, C') — .#%A, B, G, C) given by

jl(g: a, b) = (g;lgh;I, a, b) and ]1(0) = 0.

Thus j(Ty —{0}) = G; X A X B in #%A, B, G, C); so letting j = j,j’
we have (M NJ)= G, X A X B.

Finally we will show that G, is a maximal subgroup of G, so that
(M n J)° is a maximal subsemigroup of J° Let G; be a subgroup of G
such that G; C G C G,andlet T =jY(G; x A X B). Define M’ = MU T.
We shall show M’ to be a semigroup, so by the maximality of M the
assertion is proven.

Since C(b, a) € G,°, #%A, B, G7, C) is a semigroup, so

TU{0} =G, x 4 X B)uU{0}]

is a subsemigroup of J°.

Since T° is a subsemigroup of J°, we need only show that for me M
and xe T we have mxe M’ and xme M'. If mx, xme M C M’, done;
so assume mx, xm € J. Since J is regular there exist idempotents e, , e, € J
such that e;x = x, xe, = x. Also, ¢, , e, € M since M meets each H class
of S, so me,,e;me M. Further me,, eqne J since mx = (me)) xe J
and xm = x{e;m)eJ. Thus me,,eemeJ N MCT, which implies
(me;) x = mx e M’ and x(e;m) = xme M’. Thus M’ is a semigroup of S,
which proves the assertions.

In Case 2 of (4), M is a union of #-classes and M N J =~ 0. Let
J=J(M)andlet{R(a) : ac A},{L(b) : b € B}, and {H(a, b) = R(a) N L(b)}
be the #, %, and #-classes, respectively, of S contained in J. Let
A" ={acA:Ra)L M}and B' = {be B: L(b) L M}. Clearly A4’ and B’
are not empty, for then J C M, a contradiction.

Let a,eA’. Then T = (M)} R(@)UM is a subsemigroup of
S properly containing M. To prove this, utilize the fact that
R(a;) M C R(a,) W M C T. (For let r € R(ay), m € M and suppose rm ¢ M.
Then rm € J so rm #r, which implies rm%r, i.e., rm € R(a,)). Hence T = S.
Let a,€ A4’, so R(a;) £ M. Then (M)' R(a;) N R(a,) # ¢, i.e., there
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exists me (M) such that mR(a;) N R(ay) # ¢. But by Green’s
relations mR(a;) = R(ap) and in particular mH(a, , b) = H(a, , b) fot all
b e B. Similarly (using #-classes) there exists m e (M) such that for
b,,b,e B, H(a, b)) m = H(a, b,) for all ae A.

Now to see what s#-classes of J are not in M we prove the lemma:
acA,beB iff Ha, b)n M = ¢.

Let ac 4’, be B, and suppose H(a, b) C M. Then for each a;c A’
there exists m, e (M)' such that m;H(a, b) = H(a,, b). Thus for all
a;€ A, H(a;,b) C M, which implies L(b) C M, a contradiction. The
converse is clear.

Thus if B’ = B it is easy to see that j(M-N J) has form (a). Similarly
if A" = A, j(M N J) has form (b). If both 4’ and B’ are proper subsets
of 4 and B then j(M N J) has form (c).

Since it is easy to construct examples in which j(M N J) has the form
(a) or (b) but in which (M N J)® is not maximal in J° (see Remark 2
following this proof), we will complete the proof by showing that (M N Jy
is maximal in J® if j(M N J) has the form (c). By the above argument it
suffices to show that, for each a, , a, € A, there exists mec M N J (rather
than merely m € M* as above) such that mR(a,) = R(a,), and that, for
each b,,b,€ B’, there exists m'e M N J such that L(b) m' = L(b,).
Further, by the definition of the orderings on the _#-classes, it is equivalent
to show that such m, m’ can be chosen in M N J*, where J* = U {J’: J'
is a #-class of § and J' < J} since J* — J is an ideal of S.

Let R(A’) = U{R(a):ac A'}. Now for all ae A’, we have shown
above that R(4") C M'R(a). Also, by the definition of J*, we have
MOITYM = MnNJ*=MMnJ*¥., Now for any acd,
RA)YC(MNJI*)R@), or RAYNMNJI¥)R@ =é¢, since, if
mR(a) N R(a') # ¢ for some a’€ A’ and me M, then mR(a) = R(a'),
so R(a") C (M n J*) R(a) and

R(A') C M*R(a') C MM N\ J*) R(@) = (M N J*) R(a).
If R(A’) N (M N J*) R(a) = ¢, then
(M N J*) R(A') N R(A") C (M N J¥) M'R(a) N R(4")
— (M N J* R(@) N RA') = ¢
Now j(J%) = .#%A4, B, G, C) and
JMAJP = (G X AxXB)—(Gx A x B)uU{0

is a subsemigroup, so C(b,a) = 0 for all (a,b)c(4 — 4’) x (B — B').
If for ae 4’, we have R(4') N (M N J*) R(a) = ¢, then, by the above,
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R(AYN (M N J*) R(4') = ¢, so in particular, (G X 4" X (B — B'))-
(G X A’ x B) = {0}, showing that C(b, a) = Ofor all (a, b)) 4 x (B- B’),
contradicting the regularity of J. It follows that R(4") C (M N J*) R(a)
foranyae 4', i.e., for all g, , g, € A', there exists m e M N J (we replace
J* by J since no element of J* — J could satisfy the condition) such that
mR(a;) = R(ay). The proof for Z-classes is analogous. This proves the
proposition.

The following reformulation of the theorem for 0-simple semigroups is
due to Dennis Allen, Jr.

ReEMARK 1. LetS = #°%A4, B, G, C) be a regular Rees matrix semi-
group. If M is a maximal subsemigroup of S, then J(M) = {0} or
JM)=S —{0}. In the first case S — {0} is a subsemigroup and
M = S — {0}. In the second case, M N J(M) = ¢ iff § — {0} is a simple
Abelian group, (i.e., (Z,, +) for some prime p). Otherwise M N J(M)
has one of the following forms in some coordinate system:

(1) (G' x A X B), G’ a maximal subgroup of G.

(2) (G X A X B’), where B = B — {b} for some b € B and C restricted
to B’ X A is regular (i.e., non-zero at least once in each row and column).

(3) (G x A" x B)ywhere A" = A — {a} for some a € A and C restricted
to B X A’ is regular.

4 GXAXB—~(GXxA XB), where A'"=A—Y B =B — X,
and X x Y is a maximal “‘rectangle” on which C is identically zero.

Furthermore, each subsemigroup M of S containing all but one _#-class
J(M) and such that M N J(M) has one of the above forms is a maximal
subsemigroup of S.

REMARK 2. A counterexample to show that (M N J)° need not be a
maximal subsemigroup of J° when j(M N J) has form (a) of (4), Case
2 can be constructed as follows.

Let F(X,), n = 2, be the semigroup of all functions on » letters x, ,..., x,
under ordinary composition. Let {x, ,..., X, , z}! be the semigroup defined
by xy = x for all x, y € {x, ,..., X, , z}. Form the semigroup S = F(X,) U
{Xy 5...» Xn , 2} Dy defining the multiplication as follows: Let F(X,) and
{X1 ..., X , z} be subsemigroups, and for all e F(X,,),

fx; = f(x), for all x;e X,,,
X f=x;, forall x;e X, ,

frz=z f=z
Then M = F(X,) U {z} is a maximal subsemigroup of S and
J(M) = {xl seees Xn s Z}'



MAXIMAL SUBSEMIGROUPS OF FINITE SEMIGROUPS 209

Since each element of J(M) is an %#-class, j(M N J(M)) is of form (a).
But, by Remark 1 above, j(M N J(M))° is not a maximal subsemigroup
of j(J(M)°).

A counterexample for form (b) is constructed dually.
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