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An Upper Bound on Minimum Distance for a
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We obtain an upper bound on the maximum attainable minimum
distance for a k-ary code for a certain class of distance functions. This
class includes the ath power of the Lee distance (0 <« < 1).

In this paper we consider the problem of constructing block codes
(for the discrete channel with k inputs and outputs) which maximize
the minimum “distance” between code words.

Let us label the input and output levels {0, 1,2, --- , k — 1}. A code
of dimension n and size M is a set of M n-sequences a, = (a1, dn,
“tty8m) (r=1,2,---, M) wherea, € {0,1, --- , k — 1}. Often it is
meaningful to define a discrepancy or distance di;, 4,7 = 0,1, 2, -+,
k — 1, between the k levels. Two examples are the Hamming distance
h:; and the Lee distance £;; where

_J0 =3
hu = {1 i = ]- (la)
and
Gi=min{|s—jl,k—|i—j|} (1b)
We shall assume that d;; satisfies
di.' = 0, (28,)
dij = dj;, (2b)
k—1
2 dij =8 for eacht=0,1,--- .k — 1, (2¢)
=0

where § is some fixed number. Note that (2) does not require d;; to be
a metric. Conditions (2b) and (2¢) are always satisfied when d;; =
f(hij) or di; = f(£:;) where f is an arbitrary function. Let a = (a:, a2,
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., @x) andb = (b1, bz, -+, ba) be n-sequences (where a,, b, €
{0,1, -+, k — 1}). We define the distance between a and b as
d(a, b) = Zl dayp, - (3)

The minimum distance of a code is the smallest distance between the
code sequences. We are interested in the quantity d*(M, n) the largest
attainable minimum distance for a code with parameters M and n.

Our main results are the following

TueoreM 1. If di; satisfies conditions (2),-and if the (k — 1) X (k — 1)
malri (qi;) % i1 18 non-negative definite, where qi; = dos + doj — di; , then

SMn
kM - 1)

THEOREM 2. If dij = £i; , where {:; is the Lee distance, and 0 < a < 1,
the hypotheses of Theorem 1 are valid.

For the Lee distance, S = k*/4 (k even) and (K’ — 1)/4 (k odd),
we consequently have

d*(M,n) <

. {an/4(M - 1), k even
(Myn) <4
(K — 1)Mn/4k(M — 1), kodd.

Inequality (4) was conjectured by Lee (1958).

Theorem 1 is a bound of the Plotkin type (Plotkin, 1960) for Ham-
ming distance. In fact, since limuso &5 = hs;, Theorems 1 and 2 are
generalizations of Plotkin’s result. Theorem 2 is actually a consequence
of some general theorems due to von Neumann and Schoenberg (1941)
and Beurling (1950), and although the proof in Section II is complete,
it depends on their ideas.

SECTION II. PROOFS OF THEOREMS

Theorem 1 will follow directly from a lemma on the maximization of a
certain quadratic form which we will now derive.

Let D = (di;)%7%0 be a symmetric k& X k real matrix with diagonal
elements zero and such that the sum of the elements in each row (and
column) is equal to 8. Thus the d:; satisfy (2). Consider the quadratic
form

4)

k=1 k-1

F(xO,wl;"',wk—l)=22x1‘xidﬁ- (5)

3=0 i=0
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We shall try to maximize F under the constraint that
k-1
Z Zi = . (6)
=0

In what follows we shall find a condition on D under which F attains its

maximum when all the z: are equal, i.e., z; = »/k (1 = 0,1, - - - sk —1).
Rewrite (5) as

F(%;xl7 e 7xk—1) = ;xi'zidij
J
= Z 2ixi(di; — do — doj) )
+ 2 zwi(do + doj),

which from (6) is

E—1
F=2 z;ﬁxidoi - Z Til Qs , (8a)
1 %7
where
gi; = do + do;j — dij. (8b)

Now, we may write

‘Z‘; TiZi Qi; = g (x; - %)(xa - %) iy

, . (9)
+lzxi2qij—z;ZQij-
k5 7 k255

Further, from (2¢),
20 i = 2 (doi + doj — dij) = kdoi + 8 — 8 = kdos, (10)
K 7
and again from (2¢) and (10)
Z gi; = kS. (11)

Hence, combining equations 8-11 and noting that g¢o; = g = 0, we
obtain

v28 k-1 k=1 ’ »
F(.’to,.’m, ,wk-l) =—k—— ZZ(Z:‘——’E) (x,-—%)q.-,-. (12)

F=1 ¢=1
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We have immediately from (12) that F attains a maximum at z; =
v/k(i=0,1,---,k — 1) if and only if the (k¢ — 1) X (k — 1) matrix
(g:;) is non-negative definite. If (¢:;) is positive-definite, then F attains
its maximum at this point uniquely. If (¢:;) is non-negative definite and
singular, then F attains its maximum whenever the (z; — »/k) are in
the null-space of (g:;).

We state the result which we will need for Theorem 1 as

Lemuma 1. Let (di;)%7% be a matriz which satisfies (2). Then, if the
matriz (gi;)s i1 (where the g:; are defined by (8b)) s non-negative defi-
nite,

b—1 k—1 k—1 2
2 2 wiasdiy S ~(Z ) (13)
=0 £=0 i
for arbitrary z; .

Proof of Theorem 1.

Let {a,} 7%, be a code with parameters M and n with minimum distance
d*(M, n). Arrange the code words in an array

a4 = 0uln " QO
. . . (14)
Ay = Gaila2 *** Qun -

Denote by z,; the number of times symbol ¢z (1 = 0,1, 2, -+- , bk — 1)
appears in column s. Note that > z,; = M. Since the code has minimum
distance d*,

M n k=1 k=
(2)d*s 2 da,,a) = 2.3 ZZ i Taj i
1<r<t<M s=1  i=0 j==0

(15)
< SM’n/2k

where the last inequality follows from Lemma 1. Theorem 1 follows on
dividing through by (];I)

We now turn our attention to Theorem 2. We must show that the
matrix (gi;)5~ where

ij = {01 + (01 - H (16)
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is non-negative definite. Let us define the function (&) by

( » k
k+t —-k<t< —5
—1 —g- <t 0
() =1 . (17)
k
Clearly
lii = o(i — j), (18)

so that it will suffice to show that for any set {f;}2-, , where —k < & <
k and any set {pi}{~: of real numbers

N

2 peedlf(E) + J(85) = (s = )} 2 0 (19)

for the special case of f(£) = (o(2))".

The following lemma is a special case of a Theorem due to von Neu-
mann and Schoenberg (1941).*

Lemma 2. If f(t), —k < t < K, satisfies f(0) = 0, and has Fourier
series representation

1) =4 — z:lancosnwot, —k<t<k, (20)

where a, > 0, then f satisfies (19).

*Their theorem states that for any function f(t) defined on (— «, © ), the quan-
tity E pips{f(t) + f(¢) — f(t: — t;)} > 0if and only if f(t) is representable as

o
@) = f S dota)

2
0

where o¢(z) is non-decreasing and

® do(z)

2
| &

< 0
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Proof. Since f(0) = 0, A = Za, , and we can write

() = Zla,,u ~ cos nwnt) = 3 %a, sin”‘;". (21)

From the identity
sin’ A + sin’ B — sin® (4 — B) 22)
= 2sin’ A sin’ B + 1sin 24 sin 2B,

we have (using (21))
; pip; {f(:) + f(t) — f(t: — )}

= Z] pip; ;2% {sin2—"12"—°t,- +sin2ﬁ"’2_°t,- - smﬁ%’ (4 — t],)}

2

2 2
= 2 201;{2 (2 Pi SiI].2 Mo t,') + —;- (E Pi sin nwot.')} Z 0.

2

= z 2a“ 2 p’.pj{Q Sinz."g_ot‘. sinzﬂ?tj + %Sm Newo & sin 'nwot,-} (23)
n 1,5

Hence the lemma follows.
In particular the Fourier expansion for ¢(t) is

k 2k 2wt
(p(t)—a_"%d;z?”écos —k—, —ks tsk, (24)

so that (19) is satisfied when f(¢) = ¢(¢) and we have proved Theorem 2
for & = 1. To establish the theorem for & < 1, note the following facts.
Say

¥1(t) = 2 an cos nwdt (25a)
and

Ya(t) = D ba cos nwt (25b)

where @. , b, > 0. Then since cos nwet cos Mwit = 3 cos (n — Mm)wt +
1 cos (n + m)wet, the product ¢¥:(¢)y¥2(t) is of the form

i(da(t) = E”Zc,. cos ned, (26)
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where ¢, > 0. Since we can write

ot) = % (1 - y() (27)

where ¥(t), given by (24), is of the form of (25), then

(1) = (g)a (1— )= (g)( o a(am— D
ol - 1;l(a =N )

By the above observation, y* (k = 1,2, - -) is also of the form of (25).
Since 0 < @ < 1, the coefficients of the ¢* are all negative. We conclude
that ¢® is of the form of (20), and Theorem 2 follows.

Recevep: July 14, 1967

(28)
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