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1. Introduction

This paper is concerned with the study of a certain basic type of finite
semigroup, known as a 0-simple semigroup. In particular, the structure of
several important classes of subsemigroups of 0-simple semigroups will be
determined and a new canonical form for O-simple semigroups will be
found (cf. Theorems 1’, 2, 3, 4). The basic technique employed involves
the transformation of the algebraic problems into equivalent graph-theo-
retic problems by means of a natural correspondence between subsets of
the semigroup and subgraphs of a certain directed bipartite graph.

The remainder of this section is intended to be a brief review of some
standard elementary facts from the theory of semigroups which will be
used in the remainder of the paper. Proofs and much fuller discussions of
the following facts may be found in Clifford and Preston [1]. The reader
who is familiar with these may proceed to Section 2.

A semigroup is an ordered pair (S, °) where S is a nonempty set and ° is
an associative binary operation, i.e., a function mapping § X S into S by
(515 $2) = 51 ° 53 such that for all 5;, 55, s3€ S, 51 © (55 © 53) = (5, © 52) © 53. We shall
usually just say that S is the semigroup. An element x € § is said to be a zero
of § if xs = x = sx for all s € S. If § has a zero then it is unique and will be
denoted by 0.

We say that two semigroups S, and S, are isomorphic if there is a map ¢:
§; = §; which is one-to-one and onto such that ¢(s; © 5,) = @(s,) ° ¢(sp) for
all sy, s, € §;. A subset T C S is said to be a subsemigroup of S if t; o t, e T for all
1, t; € T. A nonempty subset I C S is said to be an ideal of S if for allie ]
andseS,scielandicsel. If A > B denotes {a°b:aeA,be B}, thenlis an
ideal of S if and only if S oI C Sand°S C S. [ isaleft orrightideal if the
first or second respectively of these conditions holds. For s € S, L(s) =
Seos U {s},Rs)=s°S U {s}and J(s)=S cs°S U S os UsoS U {s} are re-
spectively the principal left ideal, principal right ideal, and principal ideal
generated by s. For s,, 5, € S, we say thats, and s, are #-equivalent, £ -equiva-
lent or #-equivalent, if J(s;) = J(s5), L(s) = L(s;) or R(s;) = R(s;), respectively.
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Also we say that s; and s, are #-equivalent if L(s;) = L(s,) and R(s;)=R(s;). It
is easily seen that #,.#, # and # define equivalence relations on S and con-
sequently S is partitioned into equivalence classes called respectively the
F-classes, ¥ -classes, #-classes and #-classes of S.

Let 4 and B be nonempty sets, G a group and C: BXA4— G U {0}. Then
M%4, B, G, C), the Rees |A| X |B| matrix semigroup with structure group G and
structure matrix C, is the semigroup (G X 4 X B, ¢) [or (G XA X B U {0}, °)
if 0 e C(B X 4)], where

° P Ry — (gc(b, a’)g’, a, b’) if C(b, a’) # 0
(g a.b)c (g a’ b)) { 0 if Cb, a') =0

It is sometimes convenient to regard (g, a, b) as an |4| X |B| matrix with g in
the (a, b) position and 0 elsewhere. C is then a |B| X |4| matrix over G U {0}
and (g, a, b) > (g',a’, b') = (g, a, b)C(g’, a’, b'), where the multiplication in-
dicated is ordinary matrix multiplication and the indicated addition of
group elements is determined by the rule x+ 0=x=0+xforallxe G U {0}.

The nonzero elements of M°(4, B, G, C) can be conveniently arranged
into an |4| X |B] rectangular array known as the “eggbox” picture E of
M*(4,B,G,C):

1Bl
A,

exalg | o o | -

The rows of E are labelled by the elements of 4 and the columns of E are
labelled by the elements of B. In each box of E is a copy of G. Hence, in the
(a, b) box of E lie all the elements (g, a, b), g e G, of M*(4, B, G, C). It is not
hard to check that the nontrivial .#-classes, #-classes and #-classes of
M4, B, G, C) are just the columns, rows and boxes of E respectively.

Suppose we have amapof 4 U B—> G given bya — g,, b —> g,. If C':
B X A4— G U {0} satisfies C'(b, a) = g,C(b, a)g, for allae 4, be B, then the
semlgroup M’4, B, G, C') is isomorphic to M°(4, B, G, C), the 1somorphlsm
being given by

(g; a, b) «> (gﬂggb’ a, b)'
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The structure matrix C of M°4, B, G, C) is said to be regular (and
M’(4, B, G, C) is a regular Rees matrix semigroup) if every row and column
of C contains a nonzero entry.

A semigroup S is called simple if S has no proper ideals. S is called 0-
simple if 0e S, S = § # {0} and {0} is the only proper ideal of §. A fundamen-
tal fact due to Rees [4] in the finite case is the following result.

THEOREM. 4 finite semigroup S is 0-simple if and only if S is wsomorphic to
a regular Rees matrix semigroup.

The importance of 0-simple semigroups in the study of finite semi-
groups comes from the following fact. For any subset X of an arbitrary

finite semigroup (S, °) with a zero, we define a multiplication °’ on the set
X*=X U {0} by

x a.,x — x1°x2ifx1°xgeX
1o 0 ifxoxe X.

Then for any #-class ] of S, J° is either a null semigroup (i.e., ] «' J = {0})
or J° is a O-simple semigroup.

2. The Construction of the Graph %(X)

Let § denote an arbitrary finite 0-simple semigroup. By the Rees theo-
rem, S is isomorphic to a regular Rees matrix semigroup M°*=M%4,B, G, C),
where 4 and B are finite indexing sets, G is a finite group and C is a |B| X
|4| structure matrix with entries C(b, a) e G U {0}.

Definition 1. Let X C G X A X B=M. If (a, b)e A X B we set
Xop={ge G: (g,a,b)e X}.

We shall associate to X a certain directed graph 4(X), and a function fx
mapping 4 X B U B X 4 into 2.

Definition 2. Let X C M. The graph of X, ¥(X), is the directed graph
with vertices 4 U B and edges

EX)={(a,b)e A X B: X,, # &} U {(b, a)e B X 4: C(b, a) # 0}.
The mapping fy: 4 X B U B X 4 —> 2€ is given by
Xon if e= (a, b)e E(X)
Jx(e) = 1{C®, a)} if e= (b, a)e E(X)
o otherwise.
Note that fy determines X and C.

Definition 3. 4 path in G(X) from x to y is a sequence P(x, y)= (¢;, 5, * * * ,
e;) with ¢;e E(X) such that ¢;= (x;, x;4,), x;,€ 4 U B, 1 < i< r, withx,=xand
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X1 =9. If P(x, y) = (ey, * - - , &) is a path in ¥(X) from x to y, we define the
path product wyP(x, y) by

wxP(x, y) = ﬁfx(ek).
k=1

where for J, K C G, JK denotes, as usual, the set { jk: je J, ke K}.
A basic fact which will be of use is the following lemma.

LEMMA 1. Suppose that X C M. Then X U {0} is a subsemigroup of M° if
and only if for all ae A, be B, and for all paths P(a, b) in 9(X) from a to b,

7xP(a, b) C Xap-

Proof. We note that X U {0} is a subsemigroup of M° if and only if
X U {0})° (X U {0}) C X U {0} (where we denote the semigroup multi-
plication by ¢). Assume that X U {0} is a subsemigroup of M® and let
P(a,b)=(e1, * * * , €;) be a path in ¥(X) from ae 4 to be B of length 3. Then
e;=(a,b'),e,=(b",a’)and e3=(a’, b) forsomea’e 4,b'e B. For any (g, a, b’),
(g.a,beX,

(g ab)e(g,a,b)=(gCl,a")g,a b)e X.

If this product is nonzero, i.e., if C()’, a’) # 0, then gC(’, a’)g’ € X, and
hence

XapCO', a')Xa'.b=fx(¢1)fx(¢2)fx(33)
= mxP(a, b) C Xap-

The same argument can be applied to paths from a to b of lengths # 3.
On the other hand, if wxP(a, b) C X, for all a € 4, b e B, and for all
paths P(a, b) in ¥(X) from a to b of length 3, then (X U {0})> (X U {0}) C
X U {0}, which implies that X U {0} is a subsemigroup of M°. This proves
the lemma.
It follows from Lemma 1 that if X U {0} is a subsemigroup and P(a, b)
is a path in ¢(X) from a to b, then (a, b) € E(X). We also note that if X =M
then EX) =4 XB U B X A4 and fx(¢) =G for all ¢ € E(X).

3. The Maximal Nilpotent Subsemigroups of M°

A subsemigroup T C M° is said to be nilpotent if there exists an integerr
such that, for an r-fold product, To T - - - e T=T7={0}. In this section we
determine the structure of the maximal nilpotent subsemigroups of M°.

The translation of the problem into graph-theoretic terms is given by
the following lemma.

LEMMA 2. X U {0} C M° is nilpotent if and only if 9(X) contains no
cycles.!

1By cycle we mean directed cycle.
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Proof. Let (¢, * * - , eam) be a cycle in #(X). Then for some a;e 4, b;e B,
e2i—1 = (a3, by), e = (bi, Gi41), Il<si<sm,

where a, = a;n+1 and no generality is lost in assuming that ¢, = (a,, b,). By
the construction of ¥(X), X,,, # @ and C(b;, a;+,) # 0. Hence, for g;e Xayb;
we can form arbitrarily long nonzero products of the form

(gl: a,, bl) ° (g2, as, bZ) oo (gm’ Qm, bm) ° (gl’ a,, bl) ottty

which implies that X U {0} is not nilpotent.

Conversely, suppose there are no cycles in 9(X). If s denotes the length
of the longest path in ¢(X), then it is immediate that any product x, ° x, °

-ox,in X U {0} with ¢ > s/2 must be 0. This prove the lemma.

We should note that if X U {0} is a maximal nilpotent subsemigroup of
M°, then for any a e 4, b e B, cither there is path in ¥(X) from b to a or
(a, b) € E(X), since if there is no path from b to a then the addition of the
edge (a, b) to E(X) cannot create any new cycles. It also follows from the
maximality of X U {0} that if X,, # @ then X,, = G. In other words, X is
the union of #-classes of M°. Thus, for ee E(X) we have fy(¢) = G.

Definition 4. We call 9(X) a maximal tree if ¥(X) contains no cycles but
the addition of any new edge of the form (g, b) to E(X) creates a cycle.

It is important to note that if 9(X) is a maximal tree, then X U {0} is
automatically a subsemigroup of M°. To see this, assume that X U {0} is not
a subsemigroup and (by Lemma 1) let P(a, b) be a path in ¥(X) froma e to
b e B such that wxP(a, b) € X, Then X,, # G and by what has been said
above we must have X, , = g, i.e., (g, b) ¢ E (X). But the addition of (a, b) to
E(X) cannot create any new cycles since there is already a path P(a, b) in
%(X) from a to b. Hence, ¥(X) is not a maximal tree and the assertion is
proved. These results imply the following lemma.

LEMMA 3. X U {0} is a maximal nilpotent subsemigroup of M° if and only
if 9(X) is a maximal tree.

We should note here that since M° is regular, any maximal nilpotent
subsemigroup of M° contains 0. The main result of this section can now be
stated.

THEOREM 1. Let 9(X) be a maximal tree. Then there exist unique ordered
partitions
A=A1+A2+"'+Ar, B=Bl+82+’°'+Br,
such that 1) B; X 4; C EX), 1 <i<r,and (ii))4;XB; CEX), 1 <i<j<r.
Proof. The uniqueness is immediate. To show existence, first define
Co = {beB: (a, b) ¢ E(X) for any a e A}.

Since M? is regular and %(X) contains no cycles, we have C, # @. Next, for
ve A U B, define L(v) to be the length of the longest path in ¥(X) from an
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element of G, to v (where we adopt the convention that L(v) = 0 for ve C,).
By a previous remark, L(v) is well-defined for all v e 4 U B. Finally, for
k = 1, define C,, by

C.={ved U B: Lv)=k}.
Note that
B if kisodd
Ce € {A if kis even
and Cy,, # @ implies that C; # 2. Also, from the regularity of M, it fol-
lows that Cy; # o implies that Cy,, # 2. We now show that if u e Cy and
v € G4y then (u, v) € E(X). There are two cases:

(i) % is even. There can be no path P(v, u) in 9(X) since if there were,
then we would have k+ 1= L(v) < L(u)= k. Hence, (v, u) ¢ E(X) and (v, u) e
A4 X B. Thus, there must be a path P(u, v) in 9(X). However, L(z) = k and
L(v) = k+ 1 imply that the length of P(u, v) is 1, i.e., (u, v) e E(X).

(i1) k ¢ odd. As before, since (v, u) cannot be in E(X) and (v, u) e B X 4,
we must have (u, v) e E(X) and the assertion is proved. Thus, if 7 is the
largest integer such that C,,._; # @, then by choosing A; = Cy;_y, B; = Cy;_s,
1 < i < r, we have partitions of 4 and B which satisfy (i) and (ii) (where (ii)
follows from the inclusion 4; X B;;; C E(X)). This proves the theorem.

The preceding results can be summarized in the following theorem.

THEOREM 1'. Let X U {0} be a maximal nilpotent subsemigroup of M.
Then there exist unique ordered partitions of A and B,A =A,+ -+ -+ A, B =
By+ - - -+ B,, such that

X= U H ab:
@b)e4 XB;
I<i<j<r
Consequently, by a suitable permutation of the rows and columns of the
“eggbox” of the #-classes of M°, the #-classes H,,, (a, b) € 4; X B;, for
I < i=<r, form a “generalized diagonal” and X consists of all the #-classes
which lie above the “diagonal” (cf. Fig. 1).

A

Ar

Figure 1
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We give a simple algorithm which can be used to generate all the maxi-
mal nilpotent subsemigroups X U {0} of M° in the above canonical form.
This is accomplished as follows. (i) Form the transpose of the structure
matrix C and replace each nonzero entry by 1, forming the binary |4| X |B|
matrix D = (dy). The set of columns D; = (dy);<i<ia) of D can be partially
ordered by <, where D; < D; if and only if d;; < dy; for all i. (ii) Choose a
column D; which is minimal with respect to the partial order <. Transpose
D; and all other columns identical to it to the right-hand side of D. Next,
permute the rows of D so that all the I’s of D; go into the bottom-most rows
of the matrix. D now has the following form:

(i) Apply (ii) to the submatrix D'. By the assumption that M° is regular,
this process will continue until the matrix assumes the form given in Fig. 1.
The union of the #-classes H,, corresponding to the positions (a, b) of the
0’s above the “diagonal” of the blocks of 1’s together with {0} form a maxi-
mal nilpotent subsemigroup X U {0} of M°. The details of the proof that
this algorithm generates exactly the subsemigroups described in Theorem
1" are omitted. We point out that the same sets of #-classes are obtained if
the algorithm is performed on the rows instead of the columns of the
matrix.
An immediate consequence of these results is the following.

COROLLARY 1. M° has a unique maximal nilpotent subsemigroup if and
only if < is a linear order on the columns (rows) of D.

4. The Structure of the Subsemigroup Generated by the
Idempotents of M’ A Canonical Form for C

An element x e M° is said to idempotent if x > x = x. The set N of idempo-
tents of M° is exactly

{(C®, a)1, a, b): C(b, a) # 0} U {0}.
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In this section we determine the structure of I°, the subsemigroup gen-
erated by N. Our first goal will be to establish the following result.

THEOREM 2. Let M%(A, B, G, C) be a regular Rees matrix semigroup. It is
always possible to normalize® the structure matrix C to obtain a matrix C' with the
Sfollowing properties: (i) C' has the block form:

where C] = (C'(b, @))pep,aca,- (i) Let I° denote the subsemigroup generated by the
idempotents of M*(A4, B, G, C). The nonzero augmented #-classes I} of I’ (i.e., the
classes such that I; is a @-class) are exactly the Rees matrix semigroups M°(A;, B,,
G;, C}), where G is the subgroup of G generated by the nonzero entries of C;.

Proof. To prove the theorem it suffices to answer the following equiva-
lent graph-theoretic question: What is the minimal function f: 4 X B U
B X A = G such that (i) f((a, b)) 2 wyP(a, b) for any path P(g, b) in (N),
(i) (b, a))=fy((b, a))=C(b,a)if C(b, a) # 0. By minimal we mean, of course,
that if g2 4 X B U B X 4 — G is any function satisfying (i) and (ii), then
fix) C g(x) foralilxe 4 X B U B X 4. f determines a subset/ C M by the
condition f= f; and I° is exactly the subsemigroup generated by the idem-
potents N.

It is apparent that the minimal f satisfying (i) actually satisfies (i)’
fl@, b)) = Up@p mxP(a, b) taken over all paths P(a, b) in ¥(N).

Definition 5. We say that two vertices x, ye A U B are in the same com-
ponent of ¥(N) if and only if there is a path P(x, y) in ¥(N) from x to y. Since
(a, b) € E(N) if and only if (b, a) € E(N), there is a path P(x, y) in G(N) if and
only if there is a path P(y, x) in (N). Thus the components of ¥(N) are
well-defined.

It follows from (i)’ that if x and y are in the same component of ¥(/),
then they are in the same component of ¢(N). Hence, the components of
%(I) and ¢(N) each contain the same sets of vertices. Let us denote the com-
ponents of ¥(N) and ¥(I) by ¥(N;) and ¥(I;), respectively, 1 < i <r,and let
A; and B, denote the vertices of ¥(I;) in 4 and B, respectively. From the

2].e., permute rows and columns and make transformations of the type C (b, a)—> g,C (b, a)ga-
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regularity of M° it follows that 4; # & # B;. Of course, I is correspondingly
partitioned into “components” I;, 1 < ¢ < r, in the obvious way.

It is important to note that if (g, @, b) and (g’, a’, b') are elements of I
which lie in different components, then (g, a, b) ° (¢, a’, b') = 0. This follows
from (i)’ and the fact that there are no paths P(a, b') in (I) from a to ¥'.
Hence, in order to analyze I, it is sufficient to determine the structure of
each component ;.

Consider an arbitrary fixed component ¢ (I;) of ¢¥(I). For any (a, b) €
A; X By, it follows from (i)’ that (I;)e, # @ since 9(I;) is a component of ¥(I).
Consequently, for any (a’, §") € 4; X B;, there are paths P(a,a’), P(a’, b') and
P, b) in 9(I;). Thus, there is a path P(g, b) in ¥(I;) which includes the edge
(@, '), and, by (i)', we have | f;,((a, b))| = | f1,((a',8"))|. By symmetry we find
that | f;.((a, b))| = | fi((a’, 8"))| for all (g, b), (@, b") € 4; X B; or equivalently
that [(I1)as| = |(Ii)ar |- Since | f1.((a, b))| > 0, we see that (1)) is the complete
bipartite graph (cf. [3]) on the sets of vertices 4; and B;.

Now assume that (a, b) e E(N). We know that f;((a, b)) = (I;)s,, forms a
group under the semigroup multiplication which is isomorphic to the
group formed by the set C(b, a)(I;)q,, under the group multiplication. By
(i)', (Ii)a. is just the set of all path products wxP(a, b) for all paths P(a, b) in
%(N) (and therefore in ¥(N;)) from a to b. (Of course 7y, and my are identi-
cal in ¥(N;).) Consequently, C(b, a)(I;)a,, is just the set of all products
wxP (b, b) where P(b, b) ranges over all cycles in (N;) which start with the
edge (b, a). Now consider any cycle P(b', b'), where b’ e B;. By hypothesis,
there is a path P(q, b') in ¥(N;). Let P(b, b) denote the cycle formed by going
first from b to a along the edge (b, a), then from a to b’ along P(a, b’'), then
from &' to b’ around the cycle P(%’, b’), next back to a along the inverse of
P(a, b') (which is possible since P(a, b') is a path in ¥(N;)), and finally back
to b along the edge (a, b). Direct calculation shows that

P (b, b)= C(b, a)iryP(a, b YayP (', b' YwyP(a, b)) 1C(b, a)™?,

where the meaning of (myP(a, b))~ is obvious since in this case myP(a, b')
has a single element. Hence, for any (@', b") € 4; X B;, there exists g =
gla, b, b') e G such that

C®, a)I)ap 2 gCE¥', @)U )a g™
Since both sides have the same cardinality, we can write
C(b, a)I)ap=gCH', a" Y1) g™

i.e., all the groups C(b, a)(;),,, are conjugate in G.

We should point out that the group C(b, a)(I;),, does not depend on a.
To show this, consider two edges (a, b), (@, b) € E(N,). Letting P(a, b) denote
the path ((g, b), (b, a'), (@', b)) in ¥(N;), we have

fN((a: b)) = 7TNP(a, b) =f1v((a, b))fN((b; a’))fzv((a', b))
= ful(@ B)CH, a')fu((@', b)).
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Therefore

C(b’ a)fN((a’ b)) = C(b) a)fN((a’ b))C(bx a,)fN((a,) b))v

which can be stated equivalently as
Cb, a)Iap = C(b, a)I)apC(b, @' YT )arp-

Since both C(b, a)(I;)a,» and C(b, a')(I;),» are subgroups of G, they are equal.

Let us choose an arbitrary fixed b} € B; and denote C(b¥, a)(I;)q st by Gy.
We have seen that for any (a', b') e E(N;), C(V', @' )(I})  is conjugate to G, in
G. We have also shown that if P(b¥, b¥) is any cycle in 9(I;) from b} to b¥,
then myP(b}, b}¥) C G,.

Since it is easily seen that I; is a #-class of I°, I} is a 0-simple semigroup
(since it is certainly not null). The question naturally arises how I? can be
expressed as a regular Rees matrix semigroup. We would like to write
I} = M%4,, B,G;, C;), where C; is the |B;| X |4;| submatrix (C(b, a))se5,0c4, Of
C. However, we cannot do this since, in general, the entries of C; lie in
G U {0} and not just in G; U {0}. Nevertheless, there is something we can
do which resolves this difficulty nicely. It is well known (cf. [1]) that if the
structure matrix C of a Rees matrix semigroup M°4, B, G, C) is modified
by multiplying the rows of C on the left and the columns of C on the right
by elements of G to form the matrix C’, i.e., C'(b, a) = g,C(b, a)g,, where
a—> g,, b—> gy are maps of 4 and B respectively into G, then M*(4, B, G, C) =
M*(4, B, G, C'). We shall show that it is indeed possible to perform such a
normalization of C; in such a way that all the elements of C{ lie in G; U {0}.
In fact, it will then be easy to see that it is possible to normalize C so that
this happens simultaneously to C; for all i. We state this as a lemma.

LEMMA 4. There exists a map of A; U B, into G, where a —> gq, b —> g3, such
that
C'(b, a) = giC(b, a)ga € G; U {0}

forallae Ay, beB,

Proof. Consider the graph #(N;) and let T; be a maximal directed sub-
graph of ¥(N;) which contains no undirected cycles. In other words, if the
directions of the edges of T; are ignored, forming T, then T is a tree (cf.
[3]). Since 9(N;) is a component of ¥(N), the set of vertices of T, is 4; U B,
and T; has |4;] + |B;| — 1 edges. Let us call a path P= (g, * * * , &,) in ¥(N})
unreduced if there is an i such that ¢; = (x;, x;;,) and ¢;; = (X;41, x;). Otherwise
we say that P is reduced. T; has the important property that for any x e
A; U By, there is a unique reduced path P*(b¥, x) in T, from b} to x, where
b¥ was chosen previously to define G;. For x e 4; U B; define g, € G by

{(WNP*(bék, x))* if xeA,
77 | myP*(bF, x) if xeB;,

where myP*(bf, b¥) = 1 and (wxP*(b}¥, x))™ has the obvious meaning since
wyP*(b¥, x) consists of a single element of G.
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We assert that this choice of g, satisfies the lemma. To show this, let

(a, b) € E(N;). Consider the paths P*(b¥, b) = (d,, - - -, d,) and P*(b¥, a) =
(e1, * - * , &) in T;. The path
P(b?, b;k) = (dly Lt dr, (b’ a)’ es_1’ Tty el_l)

is a ¢ycle in G(N;) from b¥ to bF where, if ¢; = (x, y), then ¢;! = (y, x), i.e., this
Jjust reverses the direction of the edge. Hence, myP(b¥, b¥) C G,. But

wvPGF, bF) = fuldy) - - - fuld,) fl(a, b)) fes™) - - - fuler)
= axP*(b¥, DYC(b, a)(muP*(bY, a))™!

= {gC(b, a)ga} = {Ci(b, )},
and the lemma is proved.

The same calculation shows that if (a, b) or (b, a) is an edge of T}, then
C{(b, a) = 1. We note here that since C{(h,a) e G; U {0} forallae 4;, beB;,
and since G; is the set of all path products of cycles in ¥(N,) starting at b¥,
G; is exactly the subgroup of G generated by the nonzero entries of C/.
Since the components 4(I;) of ¥(I) are disjoint, we obtain, by piecing to-
gether these normalizations C{ of C; for each i, a normalization G’ of the
whole matrix C such that for all i, C{(b, a) € G; U {0}. This completés the
proof of Theorem 2.

We isolate here several useful facts which have been established in the
preceding proof:

(i) If a and &’ are in the same component of (V) then C(b, a)l,,, and
C@®’, a")l 4 are conjugate subgroups of G. In fact, C(b, all 4 =C(b, a'M o p-

(ii) For any b, € B;, the union of all path products of cycles in ¢(I;) which
start at b; forms a group isomorphic to G;.

The preceding results also yield the following theorem.

THEOREM 3. For a subgroup G' C G, a necessary and sufficient condition
that there exists a normalization C' of C such that all entries of C' lie in G' U {0}
is that there exist g€ G such that gG;gi* C G’ for all 1.

Proof. For any normalization C' of C by C’(b, a) = g;C(b, a)g,, the group
of path products of cycles in a component (I;) = %(l;) starting at b¥ is just
Gi =xGuxi', where x; =g;1. Hence x,Gx7! is certainly contained in the sub-
group generated by the nonzero entries of C;. Therefore, if the entries of
C{ are in G’ U {0}, then x,Gx;* C G’ for all i. On the other hand, suppose
there exist g;e G such that g,G;gi! C G’ for all i. By Lemma 4, there exist
8a g € G such that for all {, g,Ci(b, a)g, € G; U {0}, forallaed, beB. There-
fore

8:8:Cilb, a)gagi' € giGigi* U {0} C G’ U {0}
for all a € 4, b € B and for all i. This proves the theorem.

Definition 6. If M%4, B, G, C) is a regular Rees matrix semigroup, a
subgroup G' C G is said to be C-admissible if every subgroup of the sub-
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semigroup generated by the idempotents of M°4, B, G, C) has some con-
jugate contained in G'.
Theorem 3 can be restated as

THEOREM 3'. 4 necessary and sufficient condition on a subgroup G' C G
that there exist a normalization C' of C with all the entries of C'in G' U {0} is that
G' be C-admissible.

This result has applications in the next section in which the maximal
subsemigroups of M° are treated.

It may be pointed out here that the normalization of the structure
matrices of simple matrix semigroups M4, B, G, C) given in [5] is a special
case of Lemma 4. In particular, if C(b, a) # 0 for alla e 4, b e B, then 9(I) is
a complete bipartite graph and consists of a single component. If b§ is
chosen to be b,, if the edges of T, are chosen to be {(b;,a):aeA} U {(a,, b):
b e B — {b,}}, and if the constructions given in Lemma 4 are applied, the
normalized matrix C’ has all 1’s in its first row and column.

An immediate consequence of Theorem 3 is the following corollary.

COROLLARY 2. The following statements are equivalent: (i) I° is combina-
torial (i.e., it contains only trivial subgroups); (i) It is possible to normalize C to C'
in such a way that C'(b, a) € {0, 1} for all a € A, b e B; (iii) All path products of
cycles in G(I) are equal to {1}.

This result has found recent application in the work of J. Rhodes (un-
published) on complexity of finite semigroups.

5. The Maximal Subsemigroups of M°

As a final application of the graph-theoretic ideas discussed in this
paper, we determine the structure of the (proper) maximal subsemigroups
of a finite 0-simple semigroup.

THEOREM 4. Let M°=M%A,B,G,C)bea regular Rees matrix semigroup.
If Q is a maximal subsemigroup and Q does not contain {0}, then Q =M° — {0}.
If Q =G for a simple cyclic group G, then Q = {0} is maximal. All other maxi-
mal subsemigroups of M® properly contain {0} and are given as follows:

(2) If G’ 1s a C-admissible maximal subgroup of G, then Q =G’ XA XB U {0}
is maximal.

(1) If A" = A — {a} and C restricted to B X A’ is regular, then Q =G X A’ X
B U {0} is maximal.

(i) If B' =B — {b} and C restricted to B' X A is regular, then Q =G X A X
B’ U {0} is maximal.

(w) If X XY C B XA is a maximal submatrix of C which is identically 0, and
ifA'=A—Y and B' =B — X, then Q =M® —G X A’ X B' is maximal.

Proof. If Q is a maximal subsemigroup and Q does not contain {0}, then
M° — {0} is a subsemigroup and Q =M°® — {0}. If |[4| =|B|=1and G isa
simple cyclic group, then Q = {0} is maximal. Henceforth we shall exclude
these trivial M°, and we may assume that all maximal subsemigroups of
M?® properly contain 0.
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Let Q U {0} denote an arbitrary maximal subsemigroup of M°. There
are two possibilities.

(i) Suppose Q intersects every #-class of M°. In this case, the set of
edges E(Q) of 4(Q) contains 4 X B and by regularity, all |Q,,| are equal.
Note that Q U {0} contains all the idempotents of M°. Therefore, if we use
arguments given in the preceding section and Theorem 3, Q U {0} =
M°4, B, G', C’) for some C-admissible subgroup G’ of G and for some
suitable normalization C’ of C, i.e., such that

C'(b, a) =g,C(b, a)g, € G' U {0}

Since Q U {0} is maximal, G’ is maximal in & and this case is concluded.

(ii) Suppose Q does not intersect every #-class of M°. Then Q is the
union of #-classes of M®, i.e., fo(e) =G for allee E(Q). ForX C 4 U B, let
us define

SX)={yed U B: (x,y) e EQQ) for some x € X}.

Also, we define Z(X) C A U B to be the set of all ze A U B such that there
is a path P(x, z) in ¥(Q) from x to z for some x € X. In general, S({x}) and
Z({x}) will be denoted by S(x) and Z(x). Finally, define K C 4 and L C B by

K ={a e4: S@) =B}, L=SAd—K).

We note that K # A4 since Q U {0} is proper. There are several cases:

(a) Suppose K =@. Then for all a € 4, there exists b(a) € B — S (a). If there
were an a € 4 such that Z(a) D 4, then we could choosea’e 4 —Z(a),a’ #a,
and form the graph #(Q’) with

EQ)=EWQ U {@,b@N} U {@,x):xeB N Sba)}

where fo(¢) =G for all e € E(Q’). Then Q' U {0} is a subsemigroup of M°
(by Lemma 1), it is proper since (g, b(@))¢ E(Q'),and @’ D Q. This is a con-
tradiction to the assumption of the maximality of Q U {0}. Hence, we may
assume that Z(@) D A4 for alla € 4.

Now, if S(4) =B, then there exists x e 4 such that b(a')e S(x). ButxeAd C
Z(a) implies that b(@’) € Z(a') which in turn implies that b(a’) € S(a) since
Q U {0} is a subsemigroup. But this is a contradiction since by hypothesis
b(@') e B — S(a’). Hence, we may assume in this case that S(4) # B. By the
maximality of Q U {0}, we must have B —S(4)= {b,} for some b, B. Thus,
a € A implies that S(a) =B — {by}. Now, if there is an a’ € 4 such thata’ ¢
S(@B — {bo}), then the graph ¥(Q’) with

EQ)=EQ) U {(@’, bo)}

defines a subsemigroup Q' U {0} D Q U {0} which is proper if |4]| > 1.
Hence, we must have either 4 = S(B — {b,}) or |4| = 1. However |4| =1
implies 4 = S(B — {bo}) provided |B| > 1. Since we have excluded the case
|4| = |B] = 1, we conclude that there exists by € B such that 4 =SB — {b,})
and S(a) =B — {bo} for alla € A. Consequently, EQ) N A XB=4 X (B —
{bo}), where A =SB — {bo}).
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(b) Suppose L =B and @ # K # A. By hypothesis we can choose x ¢ K and
b € B (by regularity) such that x € S(). Since L. = B, there existsa e 4 — K
such that b € S(a). Hence,

Z(@) 2 Z(x) 2 Six) =

and therefore S(a) =B since Q U {0} is a subsemigroup, and x e $(a). This
is a contradiction since a e 4 — K implies S(a) # B.

(c) Suppose L =@ and @ # K # A. Thus a e A — K implies that (@, b) e E(Q)
for any b € B. Since Q U {0} is maximal and K # A4, we must have 4 — K =
{ao} for some a4 € 4. An argument similar to the one given at the end of
(a) now shows that (excluding the case |4| = |B| = 1) we must have S(b) #
{ao} for any b e B and S(a) =B for alla € 4 — {a,}. In other words, E(Q) N
A X B = (A4 — {ao}) X B, where S(b) # {a,} for any b € B.

We come to the last case.

(d) Suppose @ #K # A, 2 # L # B. As in (a) we see that for allae 4 ~K,
S(a) =L. Suppose that there exists b’ € B — L such that S(»') C 4 —K. Then
there must exist " € B — L such thatS(b’) N K # @since otherwise we would
have S(B — L) C A — K; this would force S(L) C K which would lead to a
contradiction. But we can now form %(Q’') by taking

EQ)=EQ) U {(@b):acd —K}

and Q' U {0} contradicts the maximality of Q U {0}. Hence we must have
S(b) ¢ 4 —K for any b e B — L. By the argument used in (a) we see that for
any a, a’ e A —K, we have a’ € Z(a). Since (x, y) ¢ E(Q) for

(,y)e LXK U (4 —K) X (B —L)

it follows that S(L) D 4 —K must hold. However, S(L) C 4 —K is immediate
and we can write S(L) =4 — K. In summary, we conclude in this case that

EQY NAXB=AXB—A—K)XB—L)=4XB—SL)X®B—L)
(5.1)

where @ # L # B, S(L) # A and L is the maximal subset X of B such that
SX) € SU).

Conversely, any subset Q U {0} of M° satisfying the constraints placed
on E(Q) N A X B by (i), (ii)(a), (ii)(c) or (ii)(d) are maximal subsemigroups
of M°. The proofs of this statement for (i), (ii)(a) and (ii)(c) are direct and
will be omitted. To establish this for (ii)(d), suppose that E(Q) satisfies (5.1)
above. We note that these conditions on L are equivalent to the condition
that L X (4 — S(L)) is a maximal rectangular subset of B X 4 which is dis-
joint from E(Q ), a fact first pointed out by D. Allen. Q U {0} is certainly a
proper subsemigroup of M°. Suppose that Q' satisfies

EQ') 2 EQ) U {(a, b)}
for some a € S(L), be B — L. Let (a’, b’) be an arbitrary element of S(L) X
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(B — L). By hypothesis, there exists x € L such that (x, a) e E(Q’). Also there
exists y e A — S(L) such that (b, y) € E(Q’). Hence

P(a', b") = ((@’, x), (x, a), (a, b), (b, y), (y, b"))

is a path in 9(Q’) from a’ t0 b’. Therefore if Q' U {0} is a subsemigroup of
M?, then (@', b’) € E(Q’). Since (a’, b') was an arbitrary element of S(L) X
(B — L), we have E(Q’) D A X B, which shows that Q' U {0} is not proper.
This completes the proof of maximality.

As an immediate consequence of Theorem 4, we have

COROLLARY 3. The maximal transitive relations on a finite set U are exactly
all subsets of U X U of the form U XU —V X (U — V) for some nonempty proper
subset V of U.

The proof is a direct application of the preceding theorem in the case
that |[4]| = |B| = |U| and C is a |U| X |U| identity matrix.

6. Concluding Remarks

The preceding examples illustrate some typical results which can be ob-
tained by a graph-theoretic approach. Other related questions such as the
structure of the maximal combinatorial subsemigroups of M°, canonical
forms for arbitrary subsemigroups of M°, and the extensions to infinite
regular Rees matrix semigroups, will be discussed in a future paper.

There is a good possibility that once the “global” structure of finite
semigroups is sufficiently well understood, these “local” results may then
be extended to arbitrary finite semigroups. This has been successfully ac-
complished in the case of the maximal subsemigroups (cf. [2] or [5]).
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