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Introduction. An analogue to a theorem of Ramsey [S] has been
conjectured for finite vector spaces by Gian-Carlo Rota. Namely,
for each choice of positive integers &, I, 7, and finite field F=GF (),
there exists an integer N(%, I, r; ¢) such that if n=N(&, I, r; g) and
the k-dimensional subspaces of an n-dimensional vector space V over
F are partitioned into r classes, then some I-dimensional subspace
of V has all of its k-dimensional subspaces in one class. In this note
we present a very general theorem of this type, a brief outline of its
proof, and general applications, including some cases of Rota’s Con-
jecture. Complete details will appear elsewhere.

Notation. Let 4 = {al, <., a,} be a finite set with £>1 and let
H,: A—4 be a permutation group on 4. Define H,= {o'.,: aEA} to
be the set of maps of 4 into 4 given by x% =a for all xS 4. H will
denote H,\JH,. We can define an action of Hon Atby (x;, - - -, x.)°
=(x1, -+, %) forx;E4, 0 EH. Let [, denote (a, - - -, a;)EA* and
let L.={ly:0€H.}, L,={E: oEH,}, L=L\JL,. We introduce the
basic concept of a k-parameter set. For fixed nonnegative integers
EZn, let I= {So, Sy o, Sk} be a partition of the set I,
={1,2,---, n} with Si=& for 1<i<k. So=0F is possible. Let
f: In—H have the property

f(7) € H, otherwise.

The set P(I, f) is defined by
P, f) = U {(x1, - - -, 2n); %y = aﬁj) ifjES,} < 4

1s60,8¢, o g5t

Note that since f(j) € H. for jES,, P(II, f) consists of exactly # ele-
ments of A,

DEFINITION. Py, is k-parameler set of An if and only if Py=P(Il, f)
for some partition IT and mapping f. Of course, we say that P; is a
k-parameter subset of the l-parameter set P,C A" if P,C P, and Py is
a k-parameter set of 47,

The main results.
THEOREM 1. For each choice of positive integers k, I, r there exists an
418
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integer M(k, 1, r) such that if m= M(k, I, r) and the k-parameter subsets
of an m-parameter set P, & A" are partitioned into r classes, then there
exists an l-parameter subset P, C P, such that all k-parameter subsets of
P, belong to the same class.

Let us call a k-parameter set PrC A normalized if f(j) =04, for all
F&So. We state the important

THEOREM 2. The preceding theorem is valid if all parameter sets are
required to be normalized.

Before proceeding to the proof outline, we list several immediate
corollaries to the theorems.

COROLLARY 1. Given integers k and r, there exists an integer N(k, r)
such that if | A| Z N(k, r) and the finite subsets of A are partitioned into
v classes then there exist k disjoint nonempty subsets Ay, - - -, Ax of A
such that all 28 —1 unions Ujer 4;, Q’#Jg{l, 2, -, k} =TIy, are in
the same class.

This follows from Theorem 2, taking 4= {0, 1} and H,= {e}.

CorOLLARY 2 (J. FOLRMAN, J. SANDERS [6]). Given integers k and
v, there exists an integer N(k, r) such that if n= N(k, r) and the set I, is
partitioned into r classes, then there exist k integers ay, - - - , ax such that
all sums { D%, €ai: €.=0 or 1, not all =0} are in the same class.

This follows for Corollary 1 by interpreting the characteristic function
of A; as the dyadic expansion of an integer a;. For k=2, Corollary 2
was first proved by Schur [7]. Schur’s result can also be stated as
follows:

Given r, there exists an integer N(r) such that if #= N(r) and the
set I, is partitioned into two classes, then the equation x+y=3 can
be solved in one class. This is also a special case of

COROLLARY 3. Let £=L(xy, - + -, %m), 1=5i=<n be a system of
homogeneous linear equations with the property that for each j, 1 <j<m,
there exists a solution (&, e, « + -+, €,) to the system £ with e,=0o0r 1 and
¢;=1. Then given an integer r there exists an integer N(r) such that if
n= N(r) and the set I, is partitioned into r classes, then £ can be solved
in one class.

This is similar to a result of R. Rado [3].

COROLLARY 4 (VAN DER WAERDEN [2]). Given integers k and r there
exists an integer N(k, r) such that if n= N(k, r) and the set I,, is parti-
tioned into r classes, then at least one class contains an arithmelic progres-
ston of length k.
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This result is implied by the stronger

CoroLLARY 5 (HALES-JEWETT [1]). Let A={ay, - -, a:} be a
finite set. Given an integer r there exists an integer N(r, t) such that if
nZ N(r, t) and the set A™ is partitioned into r classes, then there exists a
set of t elements of the form

Xi' = (xll) et 1x1u) at') Xgpy, v v y X209y ai; C oty Ay Xap, ot ;xdl) E A”’

1<isy,

all of which belong Lo one class.

This follows from Theorem 1 by taking 4 = {al, RN a,}, k=0,
I=1, H,={e}.

COROLLARY 6. Given inlegers | and r and a finite field GF(q) there
exists an integer N(I, r, q) such that if n= N(l, r, q) and the 1-dimen-
sional subspaces of an n-dimensional vector space V over GF(q) are
partitioned into r classes, then V contains an I-dimensional subspace V'
all of whose 1-dimensional subspaces are in one class.

This follows from Theorem 2 by taking A =GF(q), H,=mult. group
of GF(g), and k=0. The corresponding result for affine spaces over
GF(g) follows from Theorem 1. Corollary 6 was first proved for g =2
by D. Kleitman (unpublished) and ¢=3, 4 by B. L. Rothschild [4].
From the result for 1-dimensional affine subspaces, techniques of
Rothschild [4] can be used to prove the result corresponding to
Corollary 6 when 1-dimensional subspace is replaced by 2-dimensional
subspace. It was conjectured by G.-C. Rota that Corollary 6 holds for
k-dimensional subspaces in general.

Finally, as a more powerful application, let C* denote an n-dimen-
sional cube in E», Let us say that a set S; of 2* vertices of C* forms
a k-subspace of C* if S, is contained in some k-dimensional euclidean
subspace of E».

COROLLARY 7. Given integers k, 1, r there exists an integer N(k, 1, r)
such that if n=N(k, I, r) and the k-subspaces of C* are partitioned intor
classes, then there exists an l-subspace of Cr all of whose k-subspaces are
in one class.

BRIEF OUTLINE OF PROOF OF THEOREM 1. Let S(k; ¢, + - -, &)
denote the statement:

There exists an integer M(k; &, -+, &) such that if m
ZM(k; t, - - -, ¢) and the k-parameter subsets of an m-parameter
set P, are partitioned into r classes Cy, Cy, - - -, C;, then there exists
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an 2, 1 S4<r and an t-parameter subset P, of P, such that all the
k-parameter subsets of Py, belong to class C;.

We prove S(k; &, - -, t) by multiple induction on k and
h+t+ - - - +4. We can assume 05k, r=1 and 421 for all 4. The
first step in the induction is S(0; 4, - - -, £,). Once certain notational
difficulties have been overcome, the proof of this statement is rela-
tively straightforward. We assume S(i; £;, - - -, 4,) has been estab-
lished for 0=4 <k and all 4. Since S(k; 4, - - - y br) is certainly valid
if ht+te+ -+ - +t,=rk, we further assume that for some t>rk,
S(k; ty, + - -, t,) is valid for all choices of ¢; with #,+ - - - +t, <t

A critical step in the proof rests on the following fact. It is possible
to define a map M:L»—24" such that for each l-parameter set
P& A" there exists an (!—1)-parameter set P}, CL» with M(P;_))
= Py such that for “certain” k-parameter subsets P.C P, there exists
a (k—1)-parameter subset Py_,CP; , which makes the following
diagram commutative:

P:—lgpt—l
P, CP

Thus, the original partition of the k-parameter sets P; into 7 classes
induces a partition of (k—1)-parameter sets P} , to which we can
apply the induction hypothesis. It turns out that the “remaining”
k-parameter sets can be naturally embedded in a large parameter set
to which we can again apply the preceding argument. After a large
number of iterations of this procedure, we are left with a configuration
of blocks of “remaining” k-parameter sets which in a certain sense is
isomorphic to a large parameter set in which the blocks are identified
with points. By then partitioning these point-blocks according to the
way in which the corresponding constituent k-parameter subsets
have been partitioned and applying S(0; #, - - - , &) for suitable
H, -, t/ wecan extract a configuration of k-parameter sets from
which the induction step can be completed fairly directly. Theorem 2
follows from Theorem 1 with little difficulty. As might be expected,
the bounds provided on M(%, {, r) by this proof are extremely large.
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