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AN IRREDUCIBILITY CRITERION FOR POLYNOMIALS OVER THE INTEGERS

W. S. BrowN and R. L. GrauaM, Bell Telephone Laboratories

1. Introduction. If P(x) is a reducible polynomial of degree d=1 with inte-
ger coefficients, we should not expect the sequence

8(P) = (- -+, P(=1), P(0), P(1), - - -)

to have many noncomposite (that is, prime or unit) elements. By making this
idea precise, we shall obtain an irreducibility criterion. A special case of our
main result is that if $(P) contains p primes and # units with p42u4>d 4,
then P is irreducible.

2. Fatness. Let P(x) be any polynomial of degree d=1 with integer coefhi-
cients, and let # be the number of units in $(P). We define the fatness of P to be

f(P) = U — dr
and we say that P is fat if f(P)>0.
If €is a unit (thatis, 41 or —1), andif as, + - -, aq are distinct integers, then
the polynomial (x—a;) « + - (x—aq)+e€ has fatness at least 0. If P is fat, then

clearly $(P) must contain units of both signs.
Note that all polynomials in the set

5(P) = {£ P(+x + b)},

where b ranges over the integers and where all possible choices of signs are
taken, have the same fatness.

3. Notation. If P(x) is a polynomial, we define
d = d(P) = degree of P
p = p(P) = number of primes in §(P)
# = u(P) = number of units in §(P)
g = uy(P)
u_(P)
f=1P)

It

number of positive units in §(P)

It
I

u"_ number of negative units in $(P)

fatness of P.
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Thus u=u,4+u_, and f=u—d.
4. Classification of fat polynomials.

TreOREM 1. Let P(x) be a fat polynomial (with d=1). Then u=<4, d=<3,
[=£2; and one of the following holds:

(a) P)E3(x),uy =1, u.=1,d=1,f=1

M) Pr)€d(x*+a—1),u.=2,u_=2,d=2,f=2

() P@)ed(x*+ 2 —x—1),u. =3, uz=1,d=3,f=1
@ Px) €528 — 1), 0y =1, u_=1,d=1,f =1

(e) Plx) E32x2 — 1), us =2, us=1,d=2,f=1.

Proof. We first prove that # 4. Since P is fat, we have seen that », =1 and
#_=1. Clearly P may be written

P(x) = (v — a1 - - - (v — a)Q) + 1,

where a;< - -+ <aqu,. Now if P()=—1, we have (b—a1) - - - (b—a.,)Q(D)
=2, {b—al, cee, b—au+}g{—2, -1, 1, 2}. By the first of these relations,
at least u,—1 of the distinct integers b—ay, - + -, b—a,, must be & 1. Hence
1=uy £3, and similarly 1 Su._=<3. If 4, =3, there is at most one integer b for
which the second relation holds, so #_=1. If u#, =2, there are at most two such
integers, so #_=<2. Thus in every case u =4.

Since P is fat, d <<u, and therefore d £3.Sinceu <4 andd=1, we have f£3;
however, we shall see that the case f=3 does not occur, and therefore f<2.

Next we prove that d(Q)=0. We may assume u, 2u_, (otherwise replace
P by —P). Since #=4, it follows that #_=<2. Since P is fat, d(Q)<u_, and
therefore d(Q)=0 or 1. If d(Q) =1, then u,=u_=2. Hence, for some b;b,,

(b1 — @) (b1 — a2)Q(by) = (b2 — a1)(bs — a2)Q(ds) = — 2,

(b1 — a1, by — a3, by — ay, by — as} < {—2, —1, 1, 2}.
Since {bi—a1, bi—as} is a translate of {by—ai, by—as}, it follows that
(br—a1) (br—az) = (ba—ay) (ba—a,) and Q(by) = Q(bs). Hence Q(x) is constant.

We now have
Plx) =c¢(x —ay) -+ - (@ — ay,) + 1.

Since u_=1, we may assume P(0)= —1; that is, (—1)*¥ca; * - - Gy, = —2.
It follows that |¢| =1 or 2.
If /|c| =1, then a1 - - - @y, = £2, so either ay= —2 or a,,=2. We may

assume a;= —2. (Otherwise replace P(x) by P(—x).) If u.=1, then ca;=2,
¢=—1, and P{x)=—(x+2)+1=—(x+1), so —P(x—1)=x. If u,=2, then
carae= —~2, cae=1, as=c=+1, and Plx)=clx+2)(x—c)+1. If ¢=1, then
Plx)=x*+x—1. If c=~1, then P(x)=—(x+2)(x+1)+1, so —P(x—1)=x?
+x—1. Finally, if #. =3, then caia:a5=2, caoas= —1, a;=—1, a3=1, ¢=1, and
P(x) =525 —x—1,
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If [cl =2,thena; - -« au,=+1,s0u,=1or2. lfu,=1,thenca; =2, c= +2,
ar=+1, and P(xx)=2x—1. If u, =2, then casas=—2, o= —1, ap=1, ¢=2,
and P(x) =2x?—1. This completes the proof.

CorOLLARY 1. If P is a fat polynomial with d=1 or 2, then there is an integer
b such that P(—x) =(—1)¢P(x—0).

5. Irreducibility criterion.

THEOREM 2. Let P(x) be a polynomial with p-+2u>d=2. Then either P is
irreducible or P =QR with f(Q)+f(R)=p+2u —d.

Proof. If P is reducible, we can write P =QR with f(Q) 2f(R). Now for each
integer # such that P(x) is prime, either Q(n) or R(#) must be a unit, while for
each # such that P(n) is a unit, both Q(#) and R(n) must be units. Therefore
u(Q)+u(R)Z p+2u, and f(Q)+f(R) Zp+2u—d, as was to be shown.

COROLLARY 2: If p+2u>d+4, then P is irreducible.
6. Example. Let P(x) =x°—x*+2x%—x2+x—1. Then

PO) = -1
P(1) = 1
P2 = 29
P(4) = 883
P(—1) = -7
P(—2) = -7

P(—4) = —1429.

Thus p=35, ©=2, and p+2u—d =4. Hence if P is reducible, we have P=QR
with f(Q) =f(R) =2. But this implies d =4, which is a contradiction, so P is
irreducible.

If we fail to notice that P(4) and P(—4) are prime, then we have p=3,
uz2, and p+2u—d=2. In this case, if P is reducible, we have P=QR with
F(@)+f(R) z2. Thus either f(Q) =f(R)=1 or f(Q)=2. In the first case we may
assume d(Q) =2, and therefore Q& 3(2x2—1). But this is impossible because P
is monic. Therefore f(Q) =2, and Q& 3(x2+x—1). Now by Corollary 1 we have
Qx)=(x—0)2+(x—b)—1, and so x*+x—1 divides P(x+b). However the re-
mainder of P(x-+5) modulo x2+x—1 is Ry(b) +xRy(b), where

Ry(b) = b5 — b+ 128% — 1762 + 215 — 9
Ra(b) = 5b% — 1443 4 328> — 31p + 14.

Since R; and R; have no common integer root, the remainder cannot vanish for
any integer b. This contradiction proves that P is irreducible.
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