Universal Single Transition Time Asynchronous
State Assignments

ARTHUR D. FRIEDMAN, MEMBER, IEEE, R. L. GRAHAM, anp JEFFREY D. ULLMAN,
MEMBER, IEEE

Abstract—In this paper we consider the problem of deriving
upper bounds on the number of state variables required for an n-state
universal asynchronous state assignment (i.e., a state assignment
which is valid for any n-state asynchronous sequential function).
We will consider a special class of state assignments called SST
assignments which were first derived by Liu [1] and later extended
by Tracey [2]. In these assignments all variables which must change
in a given transition are allowed to change simultaneously without
critical races. The best universal bound known so far has been de-
veloped by Liu and requires 2%— 1 state variables, where S, = [log:n],
n being the number of states, and [x] being the least integer >x.
We shall show how this bound can be substantially improved. We
further show that, by generalizing the state assignment to allow mul-
tiple codings for states, the bounds can be still further improved.

A mathematical statement of the problem is as follows. Define
an (i, j)-separating system (SS) for a finite set S to be a family of
subsets Sy, Sy, - - -, S, of S such that for any subsets P, QCS with
| P[=i, I Q| =jand PNQ = ¢, there is a set Sy, of the family for which
either PCS;, ONSi=¢.or QT S;, PNSi=¢. Let m=m(i, j, n) de-
note the minimum value that { can assume for an (i, 7)-SS when
| S| =n. We show that

(it+logn
= Tog (1 — 2i-79)

Index Terms—Asynchronous state assignments, sequential cir-
cuits, single transition time state assignments.

N THIS paper we consider the problem of deriving

upper bounds on the number of state variables re-

quired for an n-state universal asynchronous state
assignment (i.e., a state assignment which is valid for
any n-state asynchronous sequential function). An
asynchronous sequential circuit differs from a syn-
chronous sequential circuit in that it contains no source
of clock pulses which regulate the circuit. For the syn-
chronous case, circuit terminal action is examined only
when a clock signal appears. Hence, transient condi-
tions during the change of state variables can be com-
pletely ignored and several state variables are allowed
to change simultaneously. For the asynchronous case,
circuit action is examined at all times. Therefore, tran-
sient conditions cannot be ignored and several state
variables are allowed to change simultaneously, an
event referred to as a race, only if the resulting state
does not depend on the order of change of these vari-
ables, referred to as a noncritical race. The problem of
races can be handled by restricting the state assignment
in such a manner that there are no state transitions
which involve critical races. We will consider a special
class of state assignments called STT assignments

Manuscript received May 1, 1968; revised January 16, 1969,
The authors are with Bell Telephone Laboratories, Inc., Murray
Hill, N. J. 07974,

which were first derived by Liu [1] and later extended
by Tracey [2]. In these assignments all variables which
must change in a given transition are allowed to change
simultaneously without critical races. The best uni-
versal bound known so far has been developed by Liu
and requires 2% —1 state variables where So= [logsn],
n being the number of states, and [x] being the least
integer >x. We shall show that this bound can be sub-
stantially improved. We further show that by generaliz-
ing the state assignment to allow multiple codings for
states, the bounds can be still further improved.

I't follows from Theorem 1 of [2] that a universal STT
assignment with one coding per state must have some
variable y, which partitions every pair of states 4j from
every other pair &/ such that /, k1, j. We shall say y
must satisfy the dichotomy (7, j: &,). (It is only neces-
sary to consider dichotomies involving four states, since
every dichotomy involving only three states is satisfied
by the variable satisfying some 4-state dichotomy.) For
n=1>5 there are few enough dichotomies to consider the
problem in a straightforward manner.

Below we list all the 4-state dichotomies on five states,
find the set of maximal compatibles, and then find a
minimal covering set as described in [2].

| 1 2 3 | 4 5 6 I 7 o |10 11 12 [13 14 15
1/o o o0 0 olo o o|lo o o
200 0 o0 |1 1 1 1 11 0 0 0
301 1 0 0o o |1 1|1 1t o 1 1
1|1 1|1 1 /0 0o o 1 1|1 0 1
5 1t 11 1t 1t]0o o0 o1 1 o

Max Compatibles 12 3,11215,2914,3613,45 6,
41114,5815,789,71013, 10 11 12.

Minimal covering set 1 12 15,2 9 14, 3 6 13,4 5 6,
789,10 11 12.

The minimal STT assignment is as follows.

Y1 Y2 s Y4 Vs Vs

E T RYCTN
OO
—_—O=,Ooo
P OOO
O e O
_-O e O
O bt O

For n =6 the problem becomes too large to be handled
in this straightforward manner. However, the following
theorem enables us to find a universal 6-state assign-
ment with the minimum number of state variables.

Theorem 1: There is no universal 6-state STT assign-
ment with one coding per state with 6-state variables.

Proof: For a universal 6-state assignment there are

542

1 /6 4
=500

2 \2/ \2
2-pair dichotomies which must be covered. Suppose
there is such an assignment with 6-state variables.

A variable with three 0's and three 1’s covers nine
2-pair dichotomies. A variable with four 0’s and two 1’s
covers six such dichotomies. Hence, there must be at
least three variables with three 0's and three 1’s in order
to cover 45 dichotomies with six variables. Without loss
of generality, assume that one of them has 0’s in states
1, 2, and 3. Then without loss of generality, the second
variable is as shown below.

Case 1 Case 2
1 0 0 0 0
2 0 0 0 1
3 0 1 0 1
4 1 0 1 0
5 1 1 1 0
6 1 1 1 1

In either case there is one dichotomy covered by both
variables. In addition, the third variable will cover one
dichotomy covered by each of the first two (but not by
both of them). Hence, the three variables only cover at
most 24 distinct dichotomies and any other variable
with 3-3 distribution will cover at most seven new
dichotomies. Thus, every variable must have a 3-3 dis-
tribution if we are only to use six variables.

Since every pair of these variables cover a common
distinct dichotomy, six variables with a 3-3 distribu-
tion cover at most

6
9-6—(2> =39 <45

dichotomies, and hence six variables are not sufficient.

We have thus shown that the Liu bound of 250 —1 is
exact for n=6, 7, or 8, since a universal assignment for
seven or eight states requires at least as many variables
as a universal assignment for six states. However, the
Liu bound is not exact for larger values of n, even if
n =25, In order to derive a constructive class of codes
which substantially improve upon this bound, we will
need the following preliminary results.

Definition 1: An (i, j)-separating system (SS) on a set
of states S is a family of subsets Sy, - - -, S: of S such
that for any subset P with ¢ or fewer members of S
and any subset Q, disjoint from P, with j or fewer mem-
bers of S, there is a & such that either PCS;, QNS =¢
or QC Si, PN\S;=¢ (where ¢ denotes the empty set).
Let M; ;(So) denote the minimum number of subsets
required for such a separating system if S has 25 ele-
ments. We will denote the elements of S by a binary
string of length . The kth component is 1 if and only
if that element is in Sk.

It is apparent that a valid universal STT assignment
is actually a (2, 2)-separating system. We wish to find

IEEE TRANSACTIONS ON COMPUTERS, JUNE 1969

bounds on M:2(Ss). To this end we need the following
results.
Lemma 1:

Ml'l(So) = So.

Proof : Assign a unique coding to every state of S.
This requires .Sy binary variables if .S has 25 elements.
This defines a (1, 1)-SS since for any two states 7, j of S
there is some variable y in which ¢ has the value 0 and
j the value 1, or vice versa (since ¢ and j do not have the
same coding). If fewer_than S, variables are used, two
states 7, j must have the same coding and, therefore,
are not separated.

Lemma 2:

So(So+ 1)

M 1(So) <

2
Proof: For any three states %, j, k of S we wish to
have some variable y in which 7 and j are 0 and £ is 1,
or vice versa. Let the elements of S be arbitrarily

labeled 1, 2, - - -, 25 and let n =251,
The coding R shown below is a (2, 1)-SS on 25¢ states

1T 0

T!S]|0

0

R = 25

1

T|S|1
25 | 1]

where Tisa (2, 1)-SS on 25! states and Sisa (1, 1)-SS
on 2801 states. To show this let s* be < mod =, j* be j
mod #, and £* be k mod =.

If i*, 7%, and k* are all distinct, there is some variable
of T which covers (¢*, j*; k*) and this same variable
covers (1, 7; k).

The only other categories we must consider are
shown below.

1) @, G+n); 5 G Jis<n
2) (4, (+n);j+n)

3) G i+mn,)

4) (3,75 i+n)

5) (4;1+n, j+n)

6) (i, j+n;i+n).

There is some variable of T which separates ¢ from
7 and this variable of R satisfies cases 1) and 2) since
i=i4mn, j=j+n in these variables. Similarly, there is
some variable of S which separates 7 from j and this
same variable satisfies cases 3) and 6), since in this
variable i+#n =7 and j+n=j. Cases 4) and 5) are satis-
fied by the last variable of R.

We thus obtain the recursive relation

FRIEDMAN et al.: UNIVERSAL SINGLE TRANSITION TIME ASYNCHRONOUS STATE ASSIGNMENTS

M21(So) £ M21(So — 1) + M11(So— 1) + 1
S M?,I(SO - 1) + SO~

Iterating S, times we obtain

So So(Se+ 1
Myi(So) < D i= "(—';—) .
=1

Theorem 2:
Se¢® + 58,

M22(S0) < P

Proof: For any four states 1, 7, k, and ! of S we wish
to have some variable ¥ in which 7 and j are 0 and k and
! are 1, or vice versa. Let the members of S be arbi-

trarily labeled 1, 2, - - -, 250 and let n =251,
The coding U shown below is a (2, 2)-SS on 250 states,
1 [0
VIT|O
0
U = 250!
1
250 ViT|1
L 1

where Visa (2, 2)-SSon 25—!statesand T isa (2, 1)-SS
on 2501 gtates.

The proof is similar to that of Lemma 2 and the
various cases are summarized in the table below.

Dichotomy Class Covering Column
1) (5,7: kD)
[all distinct modulo #]

2) (3, (i+n); 4, G+n))
3) (4, j+n;i+n,)

4) (4, 7; s+n, j+n)

5) (3, i+n; j, k)

6) (1, i+n;j+n, k)

7) (4, i4n;7+n, k+n)
8) (1,4 i+n, k)

9 (,7;1+n, k+n)
10) (3, j+mn; i+n, k)
11) G, j+n;i+n, k+n)

column of V which covers (%, j*;
k*, 1*)

column of V which covers (z; §)

column of T which covers (¢;)

last column of U

column of V which covers (3; 7, k)

column of V which covers (z; 7, k)

column of V which covers (3; 7, k)

column of T which covers (3, 7; k)

last column of U

column of T which covers (3; &, 7)

column of T which covers (3, k; j)

We therefore obtain the relation
MZ,Z(SO) S M2,2(SO - 1) + M‘.!,l(SO - 1) + 1

So(So — 1)

< My(So— 1) + + 1.

Iterating Sy times we obtain

S j(i—1) So*+ 58
Ms5(So) < o+ Z 3 _ e) o
=1

A different class of constructive codes for 2—1 and 2-2
separating systems can be obtained by the constructive
procedures described in Theorems 3 and 4.

Let M be an mX#n matrix. Define M/ to be an mXn
matrix whose first row is the mth row of M, and whose
ith row, 2<i<m, is the (—1)st row of M. That is, the
operator cycles the rows of M, bringing the bottom

543

row to the top. Let M =M and, for 1>1, let M
=0 M). Note that if M is an (r, s)-separating sys-
tem, then §*M is also, for any 1.

Theorem 3: Let m =mym,, with ms>m;. Suppose there
is a (2, 1)-separating system M; with m; rows and n;
columns and a (2, 1)-separating system M. with m,
rows and 7. columns. Then there is a (2, 1)-separating
system M with m rows and #;+2#%. columns.

Proof: M is shown schematically below. The rows
of M are partitioned into m; blocks of m, rows each.
The matrix My, 1 <i<m,, is an my X n; matrix, each of
whose rows is the 7th row of M;. In columns #;+1
through #n,--#,, the myX#n, matrix M, appears in each
block. In columns #;+#:--1 through #;+2#n;, the ma-
trix M, appears in each block, cvcled 7—1 times in the
7th block.

Columns
1 m | mtl mtns | mtne+l m+42n

T
Block 1 ﬂiz Mu Mz M,

T
B]OCk 2 ﬂiz Mu Mg 0M2

7
Block m, 71!2 M1m1 M, g1 M,

Let (4, j; k) be a dichotomy. We must show that
some column of M dichotomizes (4, j; k).

Case 1—1, 3, and k are in different blocks: Let these
blocks be b1, by, and b;, respectively. There is some
column of Mi, say column g, which dichotomizes
(b1, b2; b3). Then column g of M dichotomizes (%, j; k).

Case 2—1 and j are in the same block, k is in a different
block: Let 1 and j be in block b, and k in block b,. As a
general rule, an (r, s)-separating system is an (r’, s')-
separating system if ' <7 and s’ <s. Thus there is some
column of M; that dichotomizes (b;; bs). This column
dichotomizes (7, j; k).

Case 3—1, j, and k are in the same block: Let 1*=1
mod ms, 7¥ =7 mod m, and k* =% mod m,. There is some
column, say column g, of M, which dichotomizes
(Z*, 7*; k*). Then column g+n,; dichotomizes (7, j; k).

Case 4—i and k are in the same block, j is in a differ-
ent block: Since ¢ and j are interchangeable, this case
exhausts the possibilities. Let ¢ and 2 be in block b, §
in block ;. What we shall do is “project” j from block
bs to block b;. One way to project j is to find a row 7’ in
block b; which has the same values in columns #;+1
through n,+#. as j has. The second way to project j is
to find a row j// which has the same values in columns
n+ns+1 through n;+2n, as j has. If we can find a
column which dichotomizes (¢, j'; k) or (4, j/'; k), then
we know that column also dichotomizes (1, j; k).

544

Let j; and j; be the unique integers between 1 and M,
such that ji=7 mod M;and j;= (j+b1—bs) mod M,. Since
me>m;, we know that ji5%7,. Define j'=my(by—1)+5
and j"’ =my(by—1)+j. Then j #j, and both lie in
block b;. Also, rows j and j' have the same entries in
columns n;+1 through n;+#.; j and 7'/ have the same
entries in columns #n;+n:-41 through ny+2n,.

Since j'#j", they cannot both be k. Let j'#k. There
is some column between #;+1 and 7, -+, which dichoto-
mizes (4, j'; k), since M; is a (2, 1)-separating system.
This column also dichotomizes (7, j; k). If =k, then
7' #k. There is a column between n;+7.-+1 and n; 427,
which dichotomizes (¢, j''; k), since 82 M, is a (2, 1)-
separating system for any p. This column also dichot-
omizes (¢, j; k).

Example: There is a (2, 1)-separating system [which
is also a (2, 2)-separating system | with four rows and
three columns, namely,

1

[R]

_ O = O
— e O

1 0

Using M as both M; and M, in Theorem 1, we can con-
struct M’, a (2, 1)-separated system with 16 rows and
9 columns. M’ is exhibited below.

MI
o 0o o|lo o olo o o
block 1 o 0 o|lo 1 1]lo 1 1
o o o|l1 o 1|1 o 1
o 0o ol1 1 ol1 1 o0
o 1t 1/0 o0 o0]1 1 o0
o 1 1]0 1 10 0o o
block 2
loc o 1. 1] 1 o 1l0 1 1
o 1 1] 1 1 ol1 o 1
1 o 10 o0 o1 o 1
1 0 1l0 1 1|1 1 o
block 3 1t o 11 o 1{0 0 o
1 o0 1|1 1 oo 1 1
1 1 olo o o|lo 1 1
1 1 ofo 1 t{1 o 1
block 4 1 1 ol1 o 1|1 1 o
1 1 ol1 1 o|lo o o

In general, let m=2% for some integer p. Starting
with the matrix M above, and using Theorem 1, we
can construct a (2, 1)-separating system with m rows
and # =37 columns. The relation between m and # is

n = (logy m)loeB = (logy m)'-5.

We can generalize the result of Theorem 3 to (2-2)-
separating systems, with one restriction. The number
of rows in a block must be odd.

Theorem 4: Let m =mim,, with my>m; and m, odd.
Suppose there is a (2, 2)-separating system M; with
m; rows and #; columns and a (2, 2)-separating system

IEEE TRANSACTIONS ON COMPUTERS, JUNE 1969

M, with m, rows and 7, columns. Then there is a (2, 2)-
separating system M with m rows and 7,437, columns.

Proof: The plan of M is shown below. M again has
its rows partitioned into m; blocks of m, rows each. The
matrices My;, 1<i<m,, are again mys X n; matrices, each
of whose rows is the sth row of M.

Columns
m4ne+1 | n 42041
1 ny ma+1 ny+ms| through | through
n+2n, m+3n,
1
block 1 111/2 My M, M. M,
1
block 2 1112 My M, 0M, 02 M
T
blOCk 3 7112 M13 Mz 02M2 04M2
N -
block m, 1112 M, M, 6m~IM, | @XmD M,

Note that any column of M that dichotomizes (7, j;
k, 1) also dichotomizes (4, i; k, 1), (s, 7; 1, k). (B, I; 1, 7),
and four other dichotomies which are essentially the
same as (¢, j; k,). Let (¢, j; k, I) be an arbitrary dichot-
omy. By the above remark, there are only seven essen-
tially different cases to consider.

Case 1—i, j, k, and | are all in different blocks: Some
column among the first #; columns dichotomizes in this
case.

Case 2—Only 1 and j are in the same block: Again some
column among the first #; serves.

Case 3—t and j are in the same block, k and 'l are in
another block: Again some column among the first my
serves.

Case 4—AIl are in the same block: Some column from
m-+1 to n1+n, dichotomizes.

The remaining cases are more complicated, and a few
definitions will make things easier. Again we must pro-
ject rows from one block to another. There are three
useful ways to do so, either by preserving the values in
columns m+1 through n,+n., in columns #n;4n,+1
through 7:-+2n,, or in columns #n;+42n;4+1 through
m—+3n;. Three “projection functions” P, P,, and Ps
will be defined. Let b; and b; be block numbers, b #bs,
and g be a row in block b,.

Let 1< g1 < M,, gi=g mod M., and define Pi(g, by, b2)
=mao(b1—1)+g1. Note that Py(g, by, bs) is the row in
block b, which has the same entries in columns 7;+1
through #,+#, as g has.

Let 1<g,<m,, g2=(g+b1—bs) mod M., and define
Pz(g, bl, b2)=m2(b1—1)+g2 Then Pz(g, b]_, bg) is that
row in block b; having the same entries in columns
nmi+nz+1 through 7,+2n, as g has.

FRIEDMAN et al.: UNIVERSAL SINGLE TRANSITION TIME ASYNCHRONOUS STATE ASSIGNMENTS

Let 1_<_g3$ Mz, 8= (g+2b1—2b2) mod Mz, and define
Pi(g, by, bs)=ms(by—1)+g5. Pi(g, by, bs) is that row in
block & having the same entries in columns 7, +2n,+4+1
through n,-4 3%, as g has.

Since my>my, it should be clear that Py(g, b, b)

i #Pz(g, bl, bz) and .Pz(g, bl, bz) #P:(g, bl, bg) It is also
true that Py(g, by, bs) # Ps(g, by, be), for if not, then we
would have 0=2(b;—b;)mod m,. But we require that
ms be odd, so the above relation is not possible. With
these inequalities in mind, we are ready to continue
with the proof.

Case 5—i, j, and k are in one block, I in another: Let
t, 7, and k& be in block b; and ! be in block b,. Let
l1 =P1(l, bl, bz), lz=.P2(l, bl, bz), and ls=P3(l, bl, bz) Since
b, bz, and [; are all different, one of these must be neither
1 nor j. If Ls< and [;j, then one of column n+1
through #;+#n; must dichotomize (4, j; k, L1). (The case
k=1 is not ruled out.) This column also dichotomizes
(i, 7; &, 1). Similarly, if I, or /; is neither 7 nor j, we can
find a column among #;+#n:+1 through n;4+2#n, or
among m;+2n,+1 through n,+43n,, respectively, di-
chotomizing (¢, j; &, 1).

Case 6—1t and k are in one block, j and | in different
blocks: Let ¢ and k be in block &y, j in by, and I in b;.
Define j,=P,(j, by, bs) and I,= P,(l, by, bs), for g=1, 2,
and 3. As mentioned, ji, j;, and j; must be distinct, and
b, b, and I; must be distinct. Therefore, for some g=1,
2 or 3, we must have both j,#k and /,5¢. Then, one of
columns n;+(¢g—1)n.+1 through #7;-+gns must dichot-
omize (i, jq; k, l;). This column also dichotomizes
(%, 7; &, D).

Case 7—1 and k are in one block, j and 1 in another
block: Let 7 and k be in block by, j and I in by. Define
Fa=Po(G, by, b2) and l,=P (I, by, bs), ¢g=1, 2, and 3. The
argument proceeds as in Case 6.

The case where m, is even will be of most use to us.
A trivial corollary to Theorem 4 is as follows.

Corollary: 1f m, is even, m <m,, and there are m;-row,
mi-column aud me-row, ne-column (2, 2)-separating sys-
tems, then there is an m(ms—1)-row, (n:+3ny)-column
(2, 2)-separating system. :

Proof: If there is an ms-row, ns-column (2, 2)-sepa-
rating system, there is surely one with m;—1 rows and
7, columns.

Construction of Specific (2, 2)-Separating Systems

To construct good (2, 2)-separating systems using
Theorem 4, we need good starting matrices with small
numbers of rows. These can be constructed by the fol-
lowing arguments:

a) There exist 4-row, 3-column and 8-row, 7-column
(2, 2)-separating systems.

b) There is a 10-row, tl-column (2, 2)-separating
system. (This was discovered by Roth [6] with
the aid of a computer.)

¢) Thereisa 16-row, 14-column (2, 2)-separating sys-
tem [from a) and Theorem 2].

545
TABLE |
2-2 SEPARATING SYSTEMS KNOWN OR CONSTRUCTED BY THEOREMS
1,2, AND 3
Rows Columns
4 3
8 7
10 11
16 14
20 20
32 24
64 39
TABLE 11

2-2 SEPARATING SySTEMS CONSTRUCTED BY THEOREM 4

Factors

Rows of Rows Columns
49 X7 28
72 8X9 40
81 9X9 44

120 8X15 49
150 10X15 53
225 15X15 56
304 16X19 74
361 19X19 80
496 16X 31 86
620 20X 31 92
961 31X%31 96
980 2049 104

1568 32X49 108

2403 4949 112

3087 49X 63 145

3479 49% 71 148

3969 63X63 156

4544 64X 71 159

d) There is a 10-row, 8-column (2, 1)-separating sys-
tem [6].

We have exhibited a (2, 1)-separating system with
16 rows and 9 columns. Thus, using ¢) and Theorem 2,
there is a 32-row, 24-column (2, 2)-separating system.
Also using Theorem 1, there is a 32-row, 14-column
(2, 1)-separating system. Thus, using Theorem 2, we
can construct a 64-row, 39-column (2, 2)-separating
system. Using b), d), and Theorem 2, there is a 20-row,
20-column (2, 2)-separating system. These results are
summarized in Table I.

Starting with these values, we can apply Theorem 4
or its Corollary in various ways. Some of these results
are given in Table I1.

In general, suppose 7 is an odd integer and that there
is an i-row, f(¢)-column (2, 2)-separating system. Let
m=1% for some integer p. Then by Theorem 2, there
is an m-row (2, 2)-separating system with # =f(z)47 col-
umns. The relationship between m and # can be expres-
sed as

7
n= L (logs m)2.
(logs 7)?
Thus, we can find an infinity of (2, 2)-separating sys-
tems whose number of columns is proportional to the
square of the logarithm of the number of rows.

546

TABLE 1II
VALUES OF THE PROPORTIONALITY CONSTANT

i f@ f(@)/(logx)?

3 3 1.19

7 7 0.88
15 14 0.91
31 24 0.98
63 39 1.09

The constant of proportionality, f(z)/(logst)?, is usu-
ally about 1. Some actual values are shown in Table
ITI.

We have thus shown how universal STT assignments
can be derived which are relatively efficient when com-
pared with previously known bounds. However, these
assignments are far from optimal as the following theo-
rem will show.

Theorem 5: There exists a universal n-state STT
assignment with m variables, where m is any integer

which satisfies
s()
0ga
& 4

m > 16 > 21 logs n = 218,.
logs —
& 14
Proof:
1 m
1 0---1
2 0---1
3 1---0
4 1---0
n

Consider the class of #Xm binary arrays. There are
2nm guch arrays. Now consider the dichotomy (1, 2; 3, 4).
An array will cover this dichotomy if and only if it has
one of the columns shown above.

There are thus (2¢—2)m2(=9m arrays which do not
cover this dichotomy. For n states there are

()

dichotomies. There are thus at most

n
()
4

IEEE TRANSACTIONS ON COMPUTERS, JUNE 1969

arrays which do not cover some dichotomy, and hence

at least
n
2nm — <3<)) 14m2(n—4)m
4

arrays which cover all dichotomies. We wish to find
the smallest value of # such that this number is posi-
tive, i.e., such that

n
2nm > 3()14m2(n—4)m
4
n\ /14\™
>3 Go)
4/ \16
16\™ 7
&) >20)
14 4
1oge3(})
(o]
g2 4

o, 16
oz 2
& 14

Thus, for

m >

there is at least one array which covers all dichotomies
and the theorem is proved.

The proof of Theorem 5 can easily be extended to
(r, s)-separating systems yielding bounds of

(r + s)logn

o ——
g 1 — 21r—e

These bounds are nonconstructive, and probably
play a role similar to the Gilbert bound {5] of coding
theory. Although Gilbert and others showed in 1952,
by a nonconstructive argument, that error-correcting
codes with very reasonable redundancy rates exist,
constructive procedures for realizing such codes in all
cases have yet to be discovered.

The bound itself can probably be substantially im-
proved. For instance, for (1, 1)-separating systems the
derived bound is #>2S,. Since this is not exact (as
shown by Lemma 1), it seems quite likely that the con-
stant of Theorem 5 can also be improved.

Unger has shown [4] that any flow table without
essential hazards can be realized without delay elements
using a special STT assignment. It can be shown that
a (3, 2)-separating system is sufficient to satisfy the
additional constraints required by Unger.

The results obtained so far in this paper have all
been under the assumption that each state had only one
coding assigned to it. However, it is possible to have STT
assignments in which several codings are assigned to
the states but all variables which must change in any
transition are allowed to change simultaneously with-
out introducing critical races. We now show that this

FRIEDMAN et al.: UNIVERSAL SINGLE TRANSITION TIME ASYNCHRONOUS STATE ASSIGNMENTS

generalization of STT assignments enables a further
improvement in the bounds of universal assignments
for at least some values of #.

Consider the state assignment shown below.

N ¥ ¥ Y ¥s
1 0 0 0 0 0
1’ 1 1 1 1 1
2 0 1 1 0 0
2/ 1 0 0 1 1
3 1 1 0 0 1
3’ 0 0 1 1 0
4 0 0 0 1 1
4’ 1 1 1 0 0
5 1 0 1 1 0
5’ 0 1 0 0 1
6 0 1 1 1 1
6’ 1 0 0 0 0

This is an assignment for a 6-state table which con-
tains two codings for each state. The two codings as-
signed to any state are complements of each other.
(Such assignments will be referred to as complement
codes.) We will now show that this assignment is a
universal 6-state STT assignment. This is done in the
following manner. Associate with each pair of states
1, 7 two subcubes consisting of those variables which
stay fixed in transitions from ¢ to jand 7' toj' if D(1,7) <3
[where D(s, j) is the Hamming distance from % to j],
or from 7 to j' and ¢’ to j if D(¢, j)> 3. Since ¢, 7' and
j,»j' are complements, at least three variables stay fixed
in each transition. The subcubes obtained in this man-
ner are shown below.

12 0--00 23" 0-1-0 34/ 11-0- 45’ 0-0-1
127 1--11 2'3 1-0-1 34 00-1- 4’5 1-1-0
13’ 00--0 24/ -1100 35’ -1001 46 0--11
1’3 11--1 2’4 -0011 3’5 -0110 4’6’ 1--00
14 000— 25’ 01-0- 36’ 1-00- 56’ 10--0
1’4’ 111-- 2’5 10-1- 3’6 0-11- 56 01--1
15* 0-00- 26 011-—-

1’5 1-11- 2’6’ 100

16’ -0000

16 -1111

The reader may verify that the subcube associated
with either 4j transition is disjoint from the subcube
associated with either &/ transition if both k and [are
distinct from ¢ and j. Hence, there are no critical races
and the assignment is a valid universal 6-state assign-
ment requiring only 5-state variables. It was previously
shown that the universal 6-state assignment using only
one coding per state required 7-state variables. We have
also derived a universal 14-state assignment using 11-
state variables.

547

The assignment is
(23]
T|7T/2

where T is the equidistant code

[0 0 0 0 0 0 O
10101 01
0110011
1100110
0001111
1011010
0111100

11 01 0 0 1]

and T/2 is the first four columns of T.

It seems quite likely that constructive codes superior
to those of Theorems 2 and 4 can be derived for the
class of complement STT assignments. It is also pos-
sible that more general assignments in which more than
two codings are assigned to states might yield still
better bounds but no systematic procedures for making
such codings have been developed at the present time.
The Hamming assignment [3] may be viewed as an
extreme case of this kind of assignment in which 2m—1/m
codings are assigned to each of the m states. However,
this assignment yields inferior bounds.

In this paper we have considered the problems of de-
riving bounds on STT assignments which are valid for
any m-state flow table. We have presented two classes
of constructive codes and have proved that the actual
bound is proportional to So. We have also shown that
the use of STT codes with more than one coding per
state will allow some improvement in the number of
variables required for the class of constructive codes.

REFERENCES

[1] C. N. Liu, “A state variable assignment method for asynchronous
sequential switching circuits,” J.ACM, vol. 10, pp. 209-216,
April 1963.

[2] J. H. Tracey, “Internal state assignment for asynchronous se-

“quential machines,” IEEE Trans. Electronic Computers, vol.
EC-15, pp. 551-560, August 1966.

[3] S. H. Caldwell, Switching Circuits and Logical Design.
York: Wiley, 1958,

[4] S. H. Unger, “A row assignment procedure for delay-free realiza-
tions of flow tables without essential hazards,” 1966 Proc. 7th
Ann. Symp. on Switching and Automata Theory, pp. 154-159.

[5S] E. N. Gilbert, “A comparison of signalling alphabets,” Bell Sys.
Tech. J., vol. 31, 1952,

[6] R. H. Roth (private communication).

New

Reprinted from IEEE TRANSACTIONS
ON COMPUTERS
Volume C-18, Number 6, June, 1969
pp. 541-547
CopyriGET © 1969—THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.
PRINTED IN THE U.S.A.

