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examples given are graphs with loops. We have tried to include several typical
cases of one or more loops in conjunction with nonloop edges.
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NOTE ON A NONLINEAR RECURRENCE RELATED TO /2
R. L. GRAHAM and H. O. POLLAK, Bell Telephone Laboratories

In a recent study of sorting algorithms for a partially-sorted set, F. K.
Hwang and S. Lin [2] introduced the following sequence:

a =1, 1 = l:\/Zan(an + 1)], n=1,

where [ - ] denotes the greatest integer function. Thus, the sequence begins
n‘l|2|3|4|5|6|7|8|9|10|11|12|13‘
el 1123 4l6lol13]19]27]38]54]77]109]

One notes that @s,1—as, =27 for 1 =2 =<6 and it might be conjectured that
this holds in general.

In this note we investigate the sequence {a,}. We obtain an explicit ex-
pression for a, from which the conjecture follows as well as the following curious
result: @snp1— 22,1 is just the nth digit in the binary expansion of /2.

We begin by making the preliminary observation that if S(«) denotes the
set of integers {[a], [2a], [3a], - - - } then every positive integer occurs in
exactly one of the two sets S(1-+1/+/2) and S(1-++/2). This follows from well-
known results for S(a) (cf. [1]) together with the fact that (1-1/4/2)"!
+(14++/2)"t=1 and 1++/2 is irrational. Thus, for any positive integer m there
exists a unique integer ¢ such that either m = [t(1+1/v/2)] or m = [t(1 ++/2)].

THEOREM. Let a1=m, @pi1= |V20,(an+1)], n=1. Then
S |
A S A if m = l:t(1+——:>:|
i I =
@2+ 20-0)] i m = [ + /D).
Proof. Tirst note that since no integral square lies between

224 2¢ and 224 24§ = 2(t + §)?

a, =
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then
[\/2071(“” =+ 1)] = [\/Q(an + %)]
Thus we can assume
Iny1 = [\/i(an + %)]; n 2 1.
Suppose x =#(1+1/+/2) for some positive integer ¢. Then
€y [V2([«] + )] = [v2 4]
Proof of (1). Let

[4 14
=7~ [)
Then x = [x]48. Also
V2Ze=11++v2), V2i-[vi]=¢

and
28 =g+ a, ap=0 orl,

(i.e.,, B= s - - - B'=-aa3 - - - expressed base 2).
Wit v+ ]| = v2 (:(1+ %) ~ 5+ l)]

a _ _ 1
ifft+[f\/2]=[t+[f\/2]+ﬂ'—\/26+?/§:|

'ﬂ0~['—vz + L —['—ﬁ e
it 0 =g 8 \/5]— B 5 B+ -\75]

1 1
if0=({f(l——)+—01 - ]
o= (1= J5)+ S50 e
The expression inside is =0. Also f'<1 so that the expression inside is

<1—1/4/241/+/2-1=1. .. (1) holds.
Next, suppose x =#(14++/2), for some positive integer { Then

(1) [V2([2] + )] = [v2].
Proof of (1'). As before, let 8'=+/2 t— [x+/2]. Then x+/2=£(2++/2) and
xy/2—[xy/2] =tv/2—[t/2] =8".

s () iff [2t+ 2] = [x/iz(l +42) — 28+ 715]

_ _ _ 1
iff 2t + [t0/2] = [21+ [v2t+8 - \/25+~\75]

iff 0 = [3(1 —4/2) +%]
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But

o<1y _ 1—\/2+—< A= VD) + == =<1
2 V2 g \/2 \/z ’

. (1’) holds. Hence,

if m= |:t (1 + \—%):l =a, then a1 = [U(v241)];

if m=[t(v2+1)]=a, then ap = [21(1 -+ Q%)]

A minor induction argument on # now proves the theorem.
We point out that it is possible to express the conclusion of the theorem
in a somewhat more concise form:

If ay=m and @u41=[v2a,(a,-+1)] then
@y = [7(20D12 4 2= 12)]) n>1,

where 7 is the mth smallest real number in the set {1,2,3. .- }U{Vv2,2v2,
342, - - - }. The first few values are:

m|1|2 |3] 4 |5|6l 7 ]8[ 9 |10]11]12
111212123213 14 13v215 av2l6 17 [5v2

The fact that for m=1, a1 —2a2,1 is the nth digit in the binary expansion
of v/2 is now immediate (as is the fact @11 — a2, =27"1).

It would be interesting to know if similar results hold for sequences defined
by

@nt1 = [V3aa(as + 1)], tnp1 = [V2a.(a, + 1)(a, + 2)], etc.
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GENERAL SUBTRACTION
JAMES W. PETTICREW, Indiana State University

There seems to be a reluctance in abstract algebra to consider partial opera-
tions, although in elementary mathematics, subtraction and division in the
natural numbers are considered very early. It is true that some recent work in
universal algebra has been extended to include partial operations, for example,
see Pierce [1]. However, very few examples of algebraic systems with partial
operations are given. A set equipped with subtraction is an elementary example
of such a system and is understandable to students in a first course in abstract





