ON SUBTREES OF DIRECTED GRAPHS WITH NO PATH OF LENGTH EXCEEDING ONE

BY R. L. GRAHAM

The following theorem was conjectured to hold by P. Erdös [1]:

THEOREM 1. For each finite directed tree T with no directed path of length 2, there exists a constant c(T) such that if G is any directed graph with n vertices and at least c(T) nedges and n is sufficiently large, then T is a subgraph of G.

In this note we give a proof of this conjecture. In order to prove Theorem 1, we first need to establish the following weaker result.

THEOREM 2. For each finite directed tree T with no directed path of length 2, there exists a constant c'(T) such that if G is any directed graph with no directed path of length 2, n vertices and at least c'(T) edges, and n is sufficiently large, then T is a subgraph of G.

Proof of Theorem 2. First note that if G has no directed path of length 2, then each vertex of G is either a *source* (all edges directed out), a *sink* (all edges directed in), or *isolated*.

Define the graph A(d, k) for $d \ge 2$, $k \ge 0$, as follows:

A(d, 0) consists of a single isolated vertex p.

A(d, k) is formed from A(d, k-1) by adjoining to each vertex of degree 1, d new edges and vertices so that the resulting graph still has no path of length 2, where for k=1 we take p to be a source.

Thus, A(d, k) consists of the vertex p surrounded by k alternating layers of sinks and sources (cf. Figure 1).

The jth layers of A(d, k) consists of d^{j} vertices. We note the immediate

Fact. If T is a directed tree with no directed path of length 2, if the longest undirected path in T has length m, and if the maximal degree of a vertex of T is d, then T is a subgraph of A(d, m+1).

We now prove by induction on k that Theorem 2 holds for T = A(d, k). By the preceding fact, this is sufficient to establish Theorem 2 for general T.

For k=0, this is immediate. Assume the result holds for a fixed $k \ge 0$ and all d. Let D denote $1+d+d^2+\cdots+d^k$, the total number of vertices of A(d,k) and let M=D+d. Let C denote $c'(A(d,k))+d^kM$ which exists by the induction hypothesis. Suppose G is a graph with no directed path of length 2, n vertices and at least Cn edges, where n is a large integer to be specified later. Assume further that k is even

Received by the editors November 11, 1969.

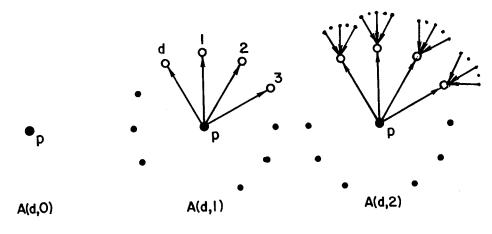


FIG. 1

(the case of k odd is similar and will be omitted). Form the subgraph G' of G by deleting from G all source vertices of degree $\leq d^k M$, of which there are, say, u of these, and their incident edges. Note that this operation does not decrease the degree of any vertex of G of degree $>d^k M$. By construction, in G' all source vertices have degree $>d^k M$. By the choice of G, we have G' has G' has G' and at least

$$Cn - ud^k M \ge c'(A(d, k))n + (n - u)d^k M$$

$$\ge c'(A(d, k))n$$

$$\ge c'(A(d, k))(n - u)$$

edges. Since G' has less than $(n-u)^2$ edges then

$$(n-u)^2 > c'(A(d,k))n$$

and

$$n-u > \sqrt{c'(A(d,k))n}$$
.

For n sufficiently large, n-u becomes arbitrarily large and we may apply the induction hypothesis to G'. This implies that G' contains a copy of A(d, k) as a subgraph. Let us examine the outside layer of vertices of this subgraph A(d, k), i.e., the vertices of degree 1. Since k is even (by assumption), these vertices are sources. Denote them by $v_1, v_2, \ldots, v_{d^k}$. With each v_i , we associate the set S_i of vertices of G' which are adjacent to v_i . That is, $s \in S_i$ if and only if (v_i, s) is an edge of G'. By the construction of G', $|S_i| > d^k M$. It is not difficult to see that this implies that we can extract a system of disjoint representative subsets R_i , $1 \le i \le d^k$, i.e., a set of subsets such that:

(i)
$$R_i \cap R_j = \emptyset$$
 for $i \neq j$,

- (ii) $R_i \subseteq S_i$, $1 \le i \le d^k$,
- (iii) $|R_i| = M, \quad 1 \le i \le d^k$.

Finally, form R_i' from R_i by deleting all vertices which lie in the subgraph $A(d, k) \subseteq G'$. Thus, $|R_i'| \ge M - D = d$ for $1 \le i \le d^k$. By reconnecting the vertices of the R_i' to the subgraph A(d, k) so that they are sinks, we see that we have $A(d, k+1) \subseteq G' \subseteq G$. The case for odd k is similar. This completes the induction step and Theorem 2 is proved.

Proof of Theorem 1. Let G be a directed graph with n vertices and at least 2c'(A(D+d,k))n edges. We shall show that for n sufficiently large, A(d,k) is a subgraph of G. By choosing c(A(d,k)) = 2c'(A(D+d,k)), Theorem 1 will then be established for T = A(d,k), and by a previous remark, this suffices to prove it for general T.

We can assume G has no isolated vertices (for otherwise they may be deleted without harm). Form the graph G^* from G by the following operation: Replace each vertex v of G by a pair of vertices v', v'' such that all directed edges going into v now go into v', and all directed edges going away from v now go away from v'' (cf. Figure 2). The vertices v' and v'' will be called mates of one another.

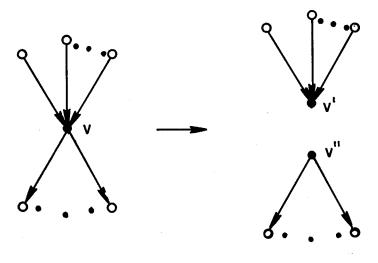


FIG. 2

 G^* has the property that it has no path of length 2, it has $n^* \le 2n$ vertices and at least

$$2c'(A(D+d,k))n \ge c'(A(D+d,k))n^*$$

edges. Hence, for n sufficiently large, we may apply Theorem 2 to G^* . This implies that G^* contains the subgraph A(D+d, k).

We next recursively delete certain vertices and edges from G^* as follows:

- (1) Delete from $A(D+d, k) \subseteq G^*$ the mate m(p) of p (the central vertex of A(D+d, k)), all edges incident to m(p) and all other vertices and edges of A(D+d, k) which are not connected to p after the deletion of m(p).
- (2) Next select d of the remaining first level vertices of A(D+d, k), say, u_1 , u_2, \ldots, u_d , and delete all the other first level vertices, incident edges and new components formed by these deletions.
- (3) For each of the u_i , $1 \le i \le d$ (which are sinks) delete from what is currently left of A(D+d, k) the mates $m(u_i)$ of the u_i , all incident edges and all newly formed components (i.e., vertices and edges not connected to p). Since each u_i is originally adjacent to $D+d\ge 1+d+d$ vertices in the second level, then after this deletion each u_i is now still adjacent to at least d vertices on the second level.
- (4) For each u_i , select d of the second level vertices to which it is adjacent, say, $u_{i1}, u_{i2}, \ldots, u_{id}$, and delete all remaining second level vertices, incident edges and new components.
- (ω) We can continue this construction since $D=1+d+\cdots+d^k$ until we have finally constructed by selective deletions a copy of A(d, k) with the important property that this A(d, k) does not contain both a vertex and its mate. This, however, is sufficient to guarantee that A(d, k) is a subgraph of the original graph G. This completes the proof of Theorem 1.

REFERENCE

1. P. Erdös, (personal communication).

Bell Telephone Laboratories, Inc. Murray Hill, New Jersey