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Both nonlinear programming problems and integer programming
problems tend to be extremely difficult to deal with; therefore it is a pleasant
surprise to find even a simple nonlinear integer programming problem which

has an effective solution algorithm,

We consider the following problem: Given a strictly convex function

f of a real variable, and a real « >0 , find integers m;,n; which minimize

subject to the constraints
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We first develop some notation. We call an assignment of values to
the m; and n; an allocation, which we write (m,,n,;...;m_,n.). A feasible
allocation is one satisfying the constraints of the problem. If A is an allocation,
we give }(A) the obvious meaning. If A is an allocation we define a simple
transformation of A to be the replacement, for some i and j, of m;,n;

m;.n; in A by m’i, “)£> m},n‘j respectively, where m, + m; = m; + m’j ,
ni«n; = ”'i + n} . Clearly, if A is feasible so is any simple transformation
of A. If A’ is a simple transformation of A and {(A) < §(A), then A' is
called a simple improvement of A. If A has no simple improvement we will
say A is locally optimal, If A is a solution to the original problem, so that

for no feasible A, §$(A) < {(A) , we will say A is globally optimal.

We would clearly like to know under what conditions a locally
optimal allocation is globally optimal. We will give later an example to show
that if & is rational, degeneracies can occur, permitting a locally optimal
allocation not to be globally optimal, The main result of this paper is to show

that the irrationality of & is the only condition needed:

THEOREM: Let « be irrational. Then any feasible allocation which
is locally optimal is globally optimal.

The proof of this theorem is long and will depend upon several
lemmas, finally leading to the conclusion that the locally optimal allocation is
essentially unique; hence the theorem. In the lemmas that follow we will not
assume « is irrational unless we specifically so state. Our first lemma
characterizes the term, "simple improvement".

LEMMA 1: Let A’ be a simple transformation of A, with m;,n;,
)
)
Then A' is a simple improvement of A if and only if

H 3} H .
m;, n; replaced by m;, n;, m;,n; respectively.

lm’i+o(n';—(m’)~+o<n'j)| < Imp+an; - Cmj+anpl.

Y ¥
Proof: Let v;= m;+an;, v, = m+an;, Vj=mj+on;,
vJ.’ - m)j“""yj' We wish to prove f(A") < £(A) if and only if IVE‘le<lVi‘Vj"
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Without loss of generality we may assume ViV, VE > v . Then, in view

J J
of the definition of a simple transformation, the inequality of the lemma is

equivalent to v, > v} 2 vj' >V . Suppose this inequality to hold. Set

?\=(vi—vj)/(vi-vj) , S0 0<A<1 , Then by the strict convexity of {, we

have
fovpy + £y = M(vt)+(1-?\)f(vj) U= Fv) + My >
> O A=)+ £ Q= ALY - V) =
= {-(vj+vt-—v'j)+ HW‘VHVJ") =
= flv)+§Cvd,
since Vj+v; = vE+v3~ . Thus certainly $(A)> £(A’) . The converse

follows immediately upon exchanging A and A’ in the above, and the observation

that Ivl—v}l = lvg-v;| implies F(A) = F(A).

This lemma, together with the theorem we are to prove, justifies
the title of this paper. Since the lemma shows that the direction of a simple
improvement does not depend on the nature of {, all such problems are
equivalent with respect to this operation. In view of the theorem, they are also
equivalent in the sense of having the same solution. To justify the word "linear™

in the title, consider the function

‘Z' I m;+an; ‘(mj+°mj)| .
I.<J
This function is easily seen to decrease under any simple
improvement; hence the linear problem with this as objective function is

equivalent in the above senses to the nonlinear problems.

It will be convenient to represent an allocation (mg,ny;...;m ,n)
geometrically, by representing each pair (m;,n;) as a lattice point in the

plane. In general some points will coincide. We will consider each distinct
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location only once; thus one point may represent many pairs. Thus an
allocation A is represented by a set X = {(x1,91),..., (xg, gs)} s we will
call this an X(-map of A. We see that A uniquely determines X. We will call
any set X ={X;} allowable if each X; is a lattice point in the closed first.

quadrant.

We will say an allowable set of points X is locally optimal if for

no (x;,y;?, ("jv‘.)j) e X do there exist nonnegative integers x’;, g’L, x.’j , g’j
? 3 ¥ ?

such that R TA R Yi+ Yy = Y+ y; and
| + oy - () +o<g’j)| < lapvoy; - (uje ay;) | . Clearly an allocation
is locally optimal if and only if its X-map is, We make two more definitions.
Let X, =(xg.yy); then the line defined by x+ay = Xo+ay, is designated
by L(Xy) or L(x4,y,). Note that if « is irrational, L(X) can contain at most
one lattice point. Second, if Xg = (x4,45) and X, = (x,,y,) are two points,
the set of points (x,y) satisfying 0<x=< Xo+ Xy, 0£ysy,+y,

is called the spanning rectangle of X, and X, .
We now give a lemma simplifying the criterion for local optimality.

LEMMA 2: Let X be allowable set of points. Suppose that for
some X,,X,€X there exists a lattice point X in the spanning rectangle of X,
and X,, which also lies strictly between the lines L(X,) and L(X3). Then X

is not locally optimal,

Proof: Set (xy,y,) = Xy, (%,,4,) = X,, (x,4) =X. Consider
also the point X' = (xy+xy-%,Y,+Y,-y) = (&,y’). Since X is in the spanning
rectangle of X, and X,, so is X' ., Furthermore x+x' = X4+ %, and
y+y' = Yy + Yy It remains to check that | x+oy -(x’+o(g’)| <
< lx1+o(g1_(xz+o(gz)l. Without loss of generality ty+ay, > ¥, +ay, .

Since X is between L(X) and L(X,), Xg+ody, > X+aY > Xy +ay, ;
but then ¥, + ay, > oy > x, +ay, . Therefore,

J¥+oty~(e'vay”)) < | Xy + oy, - (*“'2*‘“91)' » and X is not locally optimal.

We note that the converse is clear; but we do not need this. The
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advantage of the above lemma is that we need only consider the relation
between the pair of points X,,X, and a single point X, not a pair of points, If
X is in the rectangle spanned by X, and X, and is between L(X) and L(Xy)

we will say X is derivable from X, and X,.

LEMMA 3: Let X be an allowable set of points. Suppose that for

some X,,X,e¢ X it happens that Xy>Xpy Yy> Y, Then X is not locally
optimal,

Proof: Consider the point X = (x4,y,). Clearly X is in the
spanning rectangle of X, and X,. Furthermore, Xyl > X +xy,) > L, +oy,

so by Lemma 2, X is not locally optimal.

LEMMA 4: If X = {(x,,y)5- (xg,y.d} is locally optimal, then
x' = {(9“1,1) ) e ,(gs,x,s)} is locally optimal if in the original problem,
is replaced by 1/x.

Proof: If ’15+0(U£—(X—j+0(9j7l < I)L‘;,+o(g)£—(1,j+o(g})‘ )
then |y, +x; /o - Cyprxg /o] = |yl + o/ - (g3+x’j/oc)\ .

This lemma is useful in reducing the number of cases to be

considered in a proof.

LEMMA 5: Let x be irrational and let X be an allowable set of
points. Suppose that for some Xy,X,€ X there is another lattice point on the

line segment joining X, and X,. Then X is not locally optimal,
Proof: Clearly such a point is derivable from Xy and X,.

LEMMA 6: Let o be irrational and let X be an allowable set of
points. Let X,,X,,X5e X be not collinear, and suppose that there is a lattice
point in the interior of the triangle formed by these three points., Then X is not

locally optimal.

Proof: Assume X to be locally optimal. Let the longest side of

the triangle (or one of them if it is isosceles) be that joining Xy and X,. We
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first observe that this side cannot be either vertical or horizontal, Assume,
for instance, that it were vertical, say x,= L) U > Y, - Then the third point
(x3,y3) would be in one of four regions defined by: X3>X4, 43> Y,

X3< X Yz< Yys Xg< Xy, Y2 Yy and %3> %5 Y2 Y- But the first two cases
are impossible by Lemma 3, and the second two violate the assumption that

XyX, is the longest side of the triangle.

Therefore we may assume that x,<x,, y;>y,. By Lemma 4
we may also assume that X,+ay, > %, +ay, , Since the transformation
involved does not alter distances. We now consider the possible location of X3.
We cannot have %3< %, Y32y, OF X32x,, Y3 <y,, sincethen XX,
would not be the longest side of the triangle. On the other hand, by Lemma 3,
X, cannot be in any of the four (overlapping) regions defined by:

Xz >y Yg>Yyi L3> %9, Yy > Yy Xz< Xy Yz< Yys and Xz <Xy, Yz <y,.
Thus x,<xz<x, and y,2y,zy,. This rectangular region is clearly
contained within the spanning rectangle of X, and X, ; thus by Lemma 2 either

x3+o(g3 > J(.1+o(g1 or 13+0(93<.X,2+0(gz.

We consider the former case first, Let X=(x,y) be a lattice
point in the interior of the triangle. We observe that z*+aYs > X4+oy, >
> X,+0ty,, SO thatno point in the entire triangle is above L(X3). Thus
X+oy < Xz+ays 5 certainly x+ay > x,+oy, 2also. Now, either x< xj
or x>xj3 . Butcertainly y,2y and X, 2x . Thusif x<x,, X is inthe
spanning rectangle of X, and X3 and is certainly between L(X,) and L(X3),
which is impossible. If x>x3 , then y<y,, so X is derivable from X, and

X3, which is impossible.

Now suppose that X3+ayz < X,+xy, - Let X =(x,y) againbea
lattice point in the interior. By the above argument X;+ays<x+ay<¥,+oty,,
y, 2y, and X,2x%. Now, there are three possibilities: x x5
Yy, 5 OF X>X3 and y>y,. If x<xy , X isderivable from X, and X,.
If y£y, , X is derivable from X, and X3. Finally, let x> X3 and y>4yz.

Since X and X3 are lattice points, so is p (%x,y5). Butthen X’ satisfies
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the condition of the second of the three possibilities, which we have just shown

to be impossible. Thus the lemma is proved.

LEMMA 7: Let o be irrational and let X and U be two allowable
sets of points. Let X,,X,e¢X and U(,U, e¢U . Then if the line segments

X4X, and U,U, intersect, either X or U is not locally optimal.

Proof: Assume X and U to be locally optimal. Set X;= (%;,y;),
U =Cugvp, i=1,2 . Without loss of generality we may assume that
Xyt oy <xg +o(g?_ » U+ oV < Uy + Vg g+ Yy < Ug+davy,
Then u +axvy<xy+ay, , since otherwise X;X; and U;U, could not intersect.

We will distinguish two cases.

Casel: u,+av,> Xog+ oy, - Thus X, lies between L(U,} and
L(U,). By Lemma 4, we may assume without loss of generality that v, < x,,
Y24, - Then we cannot have u,<x,, v,<y,, sincethen U, would be
derivable from X4 and X,. Suppose that u,;>x, ; then v, < y, . But then
Vo >y, , since the lines XyX, and U,U, intersect. Therefore X, is in the
spanning rectangle of U, and U,, which is impossible. Now suppose that
v,> Y,z y, . Consider the triangle formed by X,X,,L(X,), and the
perpendicular dropped from X,. This triangle lies below L(Xy), so that U, is
not in the trianglie. Since W,U, crosses the side X,X, , it must also cross one
of the other two sides. It cannot cross L(X,), since U, must be above L(X}).
Therefore it crosses the perpendicular, and hence u,>x, . Hence X, is again

in the spanning rectangle of U; and U,, which is impossible.

Case II: u,+av,<x,+ay, . Thus both U, and U, lie between
L(Xy) and L(X;). By Lemma 4 we may assume that u,< u,, v,2v, . We
will relabel the points X; and X,. Let P, = (p1,q1) be that point of {X,,X,}
which lies below the line U,uU,, and P, = (p,,q,) be that point which lies

above. Since P, is above UU;, we have
Palvi=va)+ qpluy-uyg) > Ugvy - Uy, -
Suppose that p,+p,>u, . But v,<v, , socertainly
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v, € max(q,,q,) and U, would be in the spanning rectangle of P, and P,,
which is a contradiction. Thus p,+ Py<u, . Bythe same argument
QurQ, <V, Since all values concerned are integers Pi+ Py Uy -1,

q+Qq,¢ v1-—4 .

From the preceding inequality for P, , we find
UpVy = UgVy < (Up-py=4)(vy-vp) + (vy-q - 1)Cuy-u ).

From this we deduce

P1lvy=vd+q (ug-uy) <

< UgVe = WV = ZUpVy + 2U gV, + UgVy = UgVy + Uy, - UV, =(Vy=Vp) = (Uy=y)

= UgVvy~ Ugvy - U (vy=ve) = valuy=uyg) = (vy-vy) - (Up-uy) .

Suppose that Uy=U, ; then v,>v, . Then from the above we have
Pilvi=va) < uglve=va) = uglvy-vy) = (vy-vy),

s0 p,<0 , which is impossible. So we may assume Uy>wy, .
Therefore

Vq-V UV~ UgVv Vi~V
17V2 2 V2 - (U 172y, -s
Ug=Uyq Ug-Uy

9

< -
Py Wy -Uy

V4=~V UaVe—-UgV
< 1 2+21 1V

- -V _1
2 .

Since one form of the equation of the line U,u, is

V1 -\/z U-7_V1 —u-1Vz
q=-p + ’

u.z—u.1 u.z—u'1

- 206 -



we see that B lies below U,U, by more than v, +4 in the vertical
direction. From this we see also that Py < W,, since otherwiese q, would be
negative. In like manner we see that P, lies to the left of U U, by more than
u,+1 andthat q,<v, . Therefore P, lies in the pentagon bounded by the
axes, the horizontal line through Uy, the vertical line through U, , and the line

Ul;. For any point P=(p,q) in this pentagon, p+oq< max(Ug+xvVy, Lo +aav,) -

By Lemma 3, either PpZp, OF Q,2q, - Since P1 is below and
P, above U,U,, we can say that P,>Py O q,>q,- Suppose the former, so
q,%q, and q,2v, . Consider the point P1’ = (p,+1,q,). We have just seen
that this point lies below the line U,U,, and hence within the pentagon, since
Q.zV, . Thus p,+1+aq, < max (Uq+olvy, Uy +avy)<p,+aq, , so that P’
lies between L(P)) and L(P,). But p,+1<p, and Q,€0ay, S0 P’ is inthe
spanning rectangle of P, and P, ; thus X is not locally optimal, Thus the

lemma is proved.

LEMMA 8: Let & be irrational, and let X be an allowable set of

points which is locally optimal. Then X contains at most three points,

Proof: By Lemma 5, no three points of X can be collinear. If X
contains four points, either they are the vertices of a convex quadralateral or
they form a triangle of points with the fourth point in its interior. The first

case violates Lemma 8; the second violates Lemma 7.

LEMMA 9: Let A and A' be two possible allocations for the same
problem. Then the convex hulls of the X-maps of A and A’ have a point X in
common., Moreover, if either X-map has three or more points, then X is in
the interior of the plane figure defined by the X-map; if it has two points, then

X is in the interior of the line segment defined by the X-map.

Proof: Indeed, they have the point (M/r,N/r) in common. For
let X ={(xy,y) -, (2,40} be the X-map of A; then
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r 5 k-
(ﬂ,l) =2 1—(m.;,n,;) =2 ——J—(x',gj) ,
P =4 " g4 T

where kj is the number of pairs in A corresponding to (%;,y;). Likewise this
point is in the X-map of X’ of A’. The rest of the lemma follows obviously from

the above.

We are now ready to proceed to the proof of the theorem. Suppose
that A and A’ are two distinct locally optimal allocations for the problem. We
first show that their X -maps, designated by X and X’ respectively, are distinct.
We see that X has three or fewer distinct points, by Lemma 8. Suppose there

are three points X,X,,X5. By the proof of Lemma 9, we have
(MIND = kg(xy 4+ kg (X4, ) + kg (x5,Y3)-

Also, k1+k?_+k3=r. Hence

T TS ks "
91 92 93 kz = N
1 1 1 k3 r

Since X3,X, and X3 are not collinear the matrix is nonsingular, so that the
solution for k,,k,,k, is unique. Hence A' cannot have the same X -map. The
proof is similar but simpler if X has fewer than three points. (This is actually

a special case of a standard result on convex set. )

We now consider a number of cases, each leading to the conclusion
that either X or X’ is not locally optimal. Without loss of generality we may
assume that X has no more points than X’. First suppose that X contains a
single point X. Then if X' contains just two points, by Lemma 9 it is in the
interior of the segment defined by X’, contradicting Lemma 5. If X’ contains
three points, then by Lemma 9 it is in the interior of the triangle defined by

x, contradicting Lemma 6. Next, suppose that X contains just two points X,
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and X,. If X' also contains just two points, the two corresponding line
segments intersect, contradicting Lemma 7. If X' contains three points, it
either happens that X, or X, is in the interior of the triangle so defined, or
that X,X, intersects a side of the triangle, contradicting Lemmas 6 or 7
respectively. Finally, let X and X' both define triangles. Then either one is
contained in the other, contradicting Lemma 6, or their sides intersect,

contradicting Lemma 7. This completes the proof of the theorem,

The results we have shown raise some interesting combinatorial
questions about the configurations of locally optimal allowable sets. Every
rational point (M/r,N/r) in the first quadrant represents some problem, so
every such point is in the convex hull of some such set. Thus the entire first
quadrant is filled with nonoverlapping triangles representing such sets. It
would be of considerable interest to study such configurations and their behavior
as o« is varied. For example, the triangles necessarily have area 12, so that it
is possible to estimate their number in a large region, Furthermore, it is
clear that the configuration in a finite region in general remains constant

under a small change in «. It should be possible to say a good deal more than

these trivial results.

The theorem we have proved yields a rather satisfactory method of
solving problems of the type considered. Choose some starting allocation
(preferably in in an artful manner), and perform simple improvements until
the process terminates at the solution, as it must if « is irrational., A problem
can arise if o is rational. A continuity argument shows that is still true that
all the problems discussed are equivalent in the same sense as before.
However, it can happen that a locally optimal allocation is not globally optimal.
Let «=72 and consider the allocation A1 ={0,1;0,2;3,0). Itis easy to see
that A, is locally optimal, However, a simple transformation of A, leads to
A,=(2,0;0,254,1), with f(A{) = {(A,), This is not locally optimal and
leads to Az =(4,4; 1,1;4,1) which is clearly globally optimal.

Define a neutral transformation of A to be a simple transformation
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of A into A’ such that {(A) = {(A’). (We rule out merely exchanging values:
m; = m;, n}= nj» m} =mi, nj=n; .) By a continuity argument, the globally
optimal allocation is always obtainable by simple improvements and neutral
transformations alone. Therefore, one possible method of solving the problem
with o rational is by generating simple improvements until a locally optimal
allocation is found, and testing all possible allocations related to it by sequence
of neutral transformations. This, however, is likely to be tedious; perturbation
techniques might also be effective. The authors have reason to believe that a

simple, systematic way of dealing with rational « exists; this should be an

interesting avenue to explore.

In practice, « may be irrational, but it must be represented by a
rational number if the problem is to be solved by a computer. In this case one
may proceed as before to find a locally optimal allocation; if no neutral
transformation of it exists, it is globally optimal. If the original « is irrational

this will almost certainly happen.

There are two interesting directions in which the result of this
paper might be extended. First, one might generalize the given objective
function to

r

2 flmi+an;+y.),

i=4
where the Xi> v=1,..,r are given constants, In this case we conjecture
that the theorem we have proved is still true. Clearly the proof we have given
would have to be considerably modified; in fact, if the generalization is true it

is likely that an altogether different proof would be necessary.

Another direction of generalization would be to increase the

dimension. Thus, one could ask to minimize
r
Z_ flki+om; +pn;),
t=1

subject to
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r r r
'Z4k‘:=K, Z1mL=M, Zn;_: N .
L= i=

i=4

It seems very likely that a result analogous to that of this paper is
true in this case. It is not clear, however, what definition of a simple
transformation to take. In particular, perhaps sucn a transformation should
alter three triplets, not two. If such a generalized result exists, it is

probable that it can be proved in a manner similar to that of this paper.
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