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INTRODUCTION

In 1930, F. P. Ramsey [7, 9] proved the following theorem:

Theorem [Ramsey]: Let £,k,r be positive integers. Then
there is a number N,= N(£,k,r) depending only on 4,k and r with the
following property: If S is a set with at least N elements, and if all the
subsets of 5 with k elements are divided into r classes in any way, then
there is some subset of { elements with all of its subsets of k elements in a

single class,

Since this theorem appeared there has been interest in finding
generalizations, applications and analogues of it. The work presented here
was motivated by a conjecture made by Gian-Carlo Rota, & geometric analogue

to Ramsey’ s theorem, which can be stated as follows:

Conjecture [Rota]: Let {,k,r be nonnegative integers,
and F a field of q elements, Then there is a number N = N{(q,r,{, k)

depending only on q,r,{ and k with the following property: If V is a vector
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space over F of dimension at least N, and if all the k-dimensional subspaces
of V are divided into r classes in any way, then there is some {-dimensional

subspace with all of its k-dimensional subspaces in a single class,

This conjecture is obtained from the statement of Ramsey’ s
theorem essentially by replacing the notions of set and cardinality by those
of vector space and dimension, respectively, if we replace the notion of
vector space with that of affine space, then we obtain another conjecture,

This conjecture is actually equivalent to Rota’s conjecture [2, 8].
In this paper we outline the proof of another analogue to Ramsey’ s theorem,

in which we replace the notion of n-dimensional affine space by the notion of
n-parameter set, which we define later. The n-parameter sets are similar to
n-dimensional affine spaces in certain ways, and, in fact, by appropriate
choice of certain variables we can obtain results for vector and affine spaces.
In particular, the affine conjecture is shown to be true for the cases of k =0
and k =1, withany choice for {,r and q. This implies that Rota’s
conjecture is true for k=1 and k=2 [2, 8]. Some other interesting results
which follow from the n-parameter set analogue are presented as corollaries

to the main result,

In general, we shall not present the details of the proofs of various
assertions since they are rather long and will appear elsewhere, What we shall
attempt to do instead is to give a rough indication of the proofs and to show how

the results may be applied.

k ~-PARAMETER SETS

All of the aforementioned analogues to Ramsey’ s theorem are just
statements about some special kinds of subsets of certain sets and their

inclusion relationships,

Ramsey’ s theorem itself can be thought of thus as a statement
about the lattices of subsets of finite sets; Rota’s conjecture refers to the
lattices of subspaces of finite vector spaces; the affine analogue concerns the
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partially-ordered sets of the subspaces of finite affine spaces. So also is the
n-parameter set analogue a statement about partially ordered sets of special
subsets of certain sets, We give here a precise definition of a k-parameter
set followed by some (less formal) convenient notation with which the concepts

involved can be more readily digested.

Let A={a1,o,2 , ...,at} be a finite set with t22. Let H: A— A
be a permutation group acting on A. For aeA, se H the action is denoted
by a — o’. Also, for ¢,,6, € H, 5,-0, ¢ H is defined by o' °2 = (a®1)°2
for all ae A. For a nonempty subset BE A, let B = {b: be B} be the set
of constant maps of A into A given by xP=b for weA , beB. At denotes
the cartesian product AxAx...x A (t factors) which is just
fCxgmen) s xpeA, 12igt .

For & = (x4, a) e AY | ceH, we define an action of
H: At — At by

x* = (11,.--,11:),: (-)LT,---, .X,‘t—)EAt.

Similarly B acts on At by

= (s x ) = (1P, 6B) 2 by by e

for xeAt, beB.

For fixed integers n>0 and O<k<n, let T={s.,S,,...,5,}

be a partition of the set I, = {1,2,...,n} withS;4 ¢ for 1<i<k.

So= ¢ is possible, Let §:I,— HUB be a mapping with the property:
fireB if ieS,

fliyeH if eI, -S,.

The set P = (A,B,H,T,,n,k) =P is defined by
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G . n
P = ) U ) t{(x.,,...,x.n):x.j=a,;g if }esg}EA .

Definition: A subset Pc A" is said to be a k-parameter set
in A" if P = P(A,B,H,T,§{,n,k) for some meaningful choice of these variables.
What this means is the following., Let us write T symbolically as:

Sy 5, Sk
" —— ——f—

We imagine that we have bunched together the elements in the blocks
of the partition . With each iel, we associate an element f(i)e B UH.
We can write this as

So S, Si
r N— N /- ) [onend—]
[a ceu B 1'l'1 cee 61 PR 1tk PR dk]

where @,...,b & B, X4,y Sy sooes Mys-oy S € H. With L, defined by

/%1 0\

Q2

\C Ot J

(we occasionally write elements of A® as column vectors when this is useful

for our purposes), the preceding is shorthand notation for

7 —— -\ ’ — N ——

[f& o S L a1

which we can write as
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5o Sy
" N
" & b x é

O.G{ .. O~1 a11 Q11
a b x é
Q, -+ ay a,! oy
a b xy 84
[ Q¢ ay at ag
which, of course, is just

So Sy
r A \ / A—
- x 6
a -.. b a ay

% )

a b a, ... a21
L é4

| @ b ag cee Qg

Sy
—A—
% 6y ]
a1" a,'“
i Sy
Qg Q,
x d
O‘tk Q:J
Sy
"
T S
ak a1"
x é
az" .. a'zk
T é
th atk_

Now, consider an n-tuple % = (%y,...,%,) € A"

following way:
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W
o

Sk
7 A Y ' A ™ /_"/%

9 84 Xy S
X = (Q,...,b, ai’11-~-70-"_17 ey ai’k,“.,aik)

where 1< i,,i,,..., i, £t. We can think of + as being formed by taking
"row cross-sections" under the various S; and independently piecing these
together. The set of all such x forms the set P, Since each x;,... ,8; isa
permutation of A, then a different choice of "row cross-sections” results in a

different n-tuple x, Hence, |P] = £,

Thus, P is a k-parameter set in A" iff P can be generated by
some expression of the form
Sy s, Sy
(1) r - N ——" ——
[a... b 1t1...61 ‘Itk...ék]

If P, is an L-parameter set in A", we say that P, is a k-parameter
subset of Py if P, is a k-paramter set in A" and P is a subset of Py (with
the same A,B,H,n).

We point out here that a set of 2k points of A" may possibly have
many representations of the form (1). It is a k-parameter set, however, iff

there is at least one such representation.

For example, for any choice of ¢,,0,,-.., 0,€H
Sy S, S,
the set denoted by [ 5, G5 - .- '&: 7 is just A", which is an n-parameter

subset of itself.

We next state several facts about k-parameter sets whose proofs

we omit,

(i) Let P=P(A,B,H,T, {,n,k) bea k-parameter set in A" and
p;eH, 12i<k. Define {: In—>HUB by
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Bif(j) for jeS;, 1=isk,
() =
19¢h) for j€ S,
Then P’'= P(A,B,H,T,§{,n,k) = P,

(ii) Let P = P(A,B,H,ﬂ;{,n,{) be an 4 -parameter set in A", The
general k -parameter subset P, & P, is formed as follows: Choose an
unrefinement T of T, say T’ = {56'5)1"-"513 with 5,< S, and
Si+#¢,i>0. Foreach S; ¢ Sy, >0, choose T;€B; for each S; ¢ Sp
choose T;eH.

_ , T H), jeSy, v>0,
Define I, —HuB by f(j)=
F(j), j€54-

Then P, = P(A,B,H, M §’, n,k) isa k-parameter set in A",

P, & P, and all k-parameter subsets of P, can be obtained this way.

CONSTRUCTION OF *-SETS

We now give a new construction which will be essential in the

remainder of the paper. We retain the notation of the preceding section. Define

Lz = {42 aer} = {Ca v aenl A,

Lg {{E: beB},

il

Ly = {L‘;: o‘el—-\},

—
i

LAuly = {111-~’Lw}§.At~

For ¥ = (%4,--y% )€ L%, seH, we define an action of
H: Y- by
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&=
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Similarly, define B: " " by

b_(.,b b
x —(x1,...,xu).

Forall 4,me L, define themap 4 :L—L by

m“=£.

This induces a map 1: LY — L* by
e =, et

Finally we make the following definitions:

1 = (401, ., g, Lgh, o Lot ) e LY,

(@]
|
—
e =
C
—
(v 1]
(@]
H]
Py
Oi
(]
(]
O
—
[]
s =4
C
wl

LT_; {-{;GZO'GH}, L%:{&;E:Ee(.)}.

As before, we have the notion of k-parameter sets in L".

For L" we modify the notation slightly by writing a k -parameter
set P:= P(L,C,H,T* g,n,k) as

*
50
.
rd N\
* * * *
To VO S1 sk
r - -~ —N N r — [ \
b d %o o
‘('o {'o ‘to "{o Ty <S'1 Ty ‘Sk
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B i — .1 8
where 4.3 ,‘..,&% elg and 4,°,..,00 e Ly (e, %y, 8p €H).
Slightly expanded, this is

*
S oH Sk
{ - N\ 7 A Y r - Y
T Vo
f_H /__/\__\
- - = @1 -6 - wk - 6'(
(122 o (50 (20 o ()L (12
u <
- - x 8 x [
CER IR S L R G0 R €74) I
THE M MAP

n
We define a map M: L" — 27 as follows: For

L= (g %) el”, x,i=(x,“,...,x,tt)eL§At, 1£i<n, let

r(x,.”,x.z,‘,..,,x,m)ﬂ
(Xgg, %990 1%p2 ),

M(x) = ﬁ L c A"
L(X'H:’X‘Zt""’xnt) J

For S5< L" we define M(S) to be USM(S).
s€
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Suppose P = P*(L,C,H,T% g,n,{) is a {-parameter setin L".
It can be shown that if VS‘:{: ¢ then M(Pg) is just an (&+1) -parameter set
Pg,q in A", Furthermore if Pist s any (k+1)-parameter subset of Py, , in
which Tg and V; are not in the same block of the partition for Pk +1 then there

exists a k-parameter set P: in L" for which the following diagram is

commutative:
ap, cop
M l’ l' M
Pk+1 pa€,+1

Before proceeding to the outline of the proof we make a remark on
terminology. By an r-coloring of a set X we just mean a partition of X into r
disjoint (possibly empty) classes. Of course, the " r colors" correspond to the
r classes into which X is partitioned. In general, we shall use this "chromatic"

terminology in preference to that of partitions and classes.

THE MAIN RESULT

Theorem: Given A,B,H and integers korytga, tr , there
existsan N = N(A,B,H, k,r,t,s..nt.) such that if n2 N and
F’,1 = P(A,B,H,ﬂ,f,w,n) is any fixed n-parameter set in A", then for any r-
coloring of the k-parameter subsets of P, thereisan i, 1<i{ <r, such
that some t;-parameter subset of P, has all its k-parameter subsets the it

color.

Proof: The proof will proceed basically by double induction on k
and t,+...+t, . Theprooffor k =0 andall t; is relatively straight-
forward once certain notational difficulties have been overcome. For a fixed
integer k 20 assume the theorem has been established for this k and all
values of r,t,,..., tr. We prove the theorem for k+1. Of course, the

theorem is immediate for r =1, and it is true vacuously for
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t,+...+t, € (k+1) r-1 (since inthis case for some i, t; < k+1).
Henceforth we assume that r 22, t; 2 k+1, and that for some
pz(k+1)r-1 the theorem holds forall t,+ ..+t <p  We must prove
the theorem with the additional assumption, which we now make, that

v+t = pet.

Definition: Let P, = P(X,Y,G,T,§,w,m) be an m-parameter
set in X", where T is the partition {SO ,S41---+Sp3. Thenfor k<m and
1<{ <m, an S;-crossing k-parameter subset of P, is a k-parameter
subset P = P(X,Y,G, T, § w,k) with the partition T’ = {Sy, S}, ..., 5} },
and S; ¢ sy -

Now let L,C and the map M be as before. We state a lemma

whose proof we omit.

Lemma 1: Let Pm+1= P(A,B,H,T, faw,m+1) bean (m+1) -
parameter set in A¥ with partition T = {S,,5,,.--» S, .41 .
Let L>0 be an integer. If m=z N(L,C,H,k,r,%,...,2) (which is meanigful
\—V__/
r
by the induction hypothesis), then for any fixed i, 1<i<t, andfor any r-
coloring of the (k+1)-parameter subsets of P, 4, there is an S, -crossing

(X+1)-parameter subset Py , of P such that for some j, 1<j<r, all

m+4
the S; -crossing (k+1) -parameter subsets of Py, have the jth color.

Let A,B,C,H,L and M be as before. Let
P;fI = P(L,C,H,T* §,w,m) be an m-parameter set in [ with partition
T*= {V: U To* = S; R 5: , ...,an}, Vg:f.—qS.Then Post = M(P,:) is an
(m+1) -parameter set in A%, Let Pp o bea Vg -crossing (L+2) -parameter

subset of P41 >

So S, S2 See2
* *
Vo Sj
— e Ny
PL+2= [b,,,d Tl:o...éo Pe e Uj]{j...G'jéj w... [P ...d].



Then P{+ , is the disjoint union of t (4+1)-parameter subsets

PEH > 4<€i=t, none of which are V;-crossing subsets, defined by

w
o~

PN
-~ ~
So 5, S, Sp2
— / A\ N —— N\
* *
Vo SJ
/__H /.—/M____“
il 3 To To o %; o-léj jl
P£+1 [b d a; a; ol a; x é

Definition: The PL 4 are called V; -translates of each other
in Pe +2 (or just translates when no confusion arises),
Remark 1: Let P, , bea V;-crossing (4 +2)-parameter

subset of P,,, 4, as above, with V;-translates pL2+1 , and let Pk+2 be a

\/: -crossing (k+2) -parameter subset of P,  ,. Then

1
51
- A —
1
7\
4 A
V * ) )

So 0 Sj Se 5, Si+2

—A —— —— " "

Peog=1lb.nd oo g8y - O 6;8; .. Tom W .. .8 ).

P oo I8 the disjoint union of the ¢ V;-translates Pf( +11 Where
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o]
r A ~
)
51
7 - Y
50 51
—N A ~
* ) )
>0 Vo S Se Sz S
r—"— r A— r 7~ a) — —"™~
L - = T T G{%; 668; r ,
Pt+1=[b...d “on QLOQ.LO .o Q.Ls "...G,Lj" ven Q_'E’Q,‘n(‘ [ | ST GJ

We see that PLA = PEH N Pria becat}se PkL+1 < P£L+1 and
P|',+29 Pt.o, and on the other hand, any point in Pg.q and P, , must be in

P"; +1 as can be checked by verifying the inclusion properties of parameter sets.

Remark 2: If P, 4 isany (k+1)-parameter subset of P-EH ,

*
then there is some V,-crossing (k+2)-parameter subset of P, , with
t : H ,
) J . * i
Pk+2=jL_—-J1 Pyt o the Py, being V, -translates, suchthat P, 4, =Py 4.

In particular, taking Pé +q to be as in the definition, Pk+1§ P{L +4 must look like

L}
So
A\
. )
S
ld —A ™
s Ve s s S, S
0 0 ) g9 2 k+2
— —_— — P —P N ——
- = xy & 6% 66 v
Proq = [b d...alal ool lal? L d%al w 6']



Then we can take

This choice of P, is well-defined, That is, S} = S, is the
smallest set we can choose from 53 to generate a (k+2)-parameter set which
is V; -crossing and is contained in Py , (since any such S; must contain SHB

*
We shall refer to this particular F  , as the Vj-expansion of P, 4 in Py ,.

Remark 3: It should be noted that if P, 4 is any (k+1)-para-

*
meter subset of Pe .2, then either Pk 44 8@ Vj-crossing (k+1)-parameter

set, or P ,< Pé:z for some (.

This follows from the way in which the (k+1)-parameter subsets of
P must be formed.
£4+2

Definition: Let A,B,H be as above. Let P,,, bean (m+v)-
parameter subset of A with partition {So, Syh--+2Sy»Vqs .- Vy). For each

is the union of t disjoint (m+v-1)-parameter subsets

4,’=1,2,...,m, pm+v

P(Jm+v_1), (0 1€j<t , whichare V, -translates of each other. Let Pl<+1
be a (k+1)-parameter subset of P, which is V; -crossing for at least
one L. Let £ = m_maxii: Pys+q is V, crossing }.Then we associate
with B, the (L+1)-tuple (L5 j_, i 4, "'{jm-£+1)’ where for

m-4 <i<m wedefine j; by: P, & ijnb+v-1,i.' (For £ =0 we get
merely (0)). We call this the signature of Py .4 in P, ., withrespect to
(V4,Vzs -5 V). An r-coloring of the (k+1) -parameter subsets of P,
will be called a (V,,V,,...,V,,) ~coloring if the colors of all (k+1) -parameter

subsets with the same signature are the same,
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We next present an iterated form of Lemma 1, For arbitrary
positive integers m and v, define the integers v; , 1<i<m as follows
(where the various values of the function N exist by the induction hypothesis of

the theorem):

_ tm—'l
V1=N(L;C)H»kvr ,V,...,V),

_ tm-?.
v2=N(L,C,H,k,r ,v1+’l~,...,v1+1),

tm—i,—'1

VL-+1=N(L,(-I,H,k,r Wi 1,V + 1),

<
Il

- 0
N(L,C,H,k,rt Weq v 10 Vg #1).

Lemma 2: Let m and v be positive integers. Let
P, = P(AB,HT,{,w,x) be an x-parameter set in A with %= Ve -

Suppose the (k+1{) -parameter subsets of P, are r-colored.

Then P, contains an (m +v) -parameter subset P, . with
partition {So, S4r35,,V41-.3 V), such that the r-coloring restricted to

Pnsv i82 (Vi Vi _41--,Vy) -coloring.

With the help of Lemma 2, the theorem can now be proved. We

define V= max N(A,E)H,k+1,rvt1)-") tL"1’ "‘)tr)7
1€i<r v
m=NCAB M0, r% 44, .. 4), K=( 4s) , andwelet vy,...,v,,
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be as previously defined, The induction step can be shown to hold for the
choice N(A,B,H, k1, r,ty,.,t,.) = v, .

A very informal sketch of the remainder of the proof can be given
as follows, The original r-coloring of the (k+1) -parameter subsets of an N -
parameter set P (with N 2v, ) induces an r-coloring of the k -parameter
subsets of the induced (N-1)-parameter set P% By the induction hypothesis
we can find a "large" parameter set Q* € P* with all k -parameter subsets of

Q* the same color.

Using the map M, we can show that this induces a large parameter
set Q S P such for some "direction” all the crossing (k+1) -parameter subsets
of Q@ are one color. The remaining (k+1) -parameter subsets of @ fall into t
classes which are translates of one another such that each class consists of
the set of (k+1) -parameter subsets of a parameter subset Q' of Q. We
choose one of these t classes, say, the class of (k+1)-parameter subsets of
Q', and recolor each of these (k+1) -parameter subsets using r* colors
according to the way in which the corresponding translates of the particular
(k+1) -parameter subset were r-colored. We again go up into the *-sets, use
the induction hypothesis and the map M, and obtain a large parameter subset
R of Q@ such that for some new direction all crossing (k+1) -parameter
subsets of R are one color (probably a different color than that of the first
class of (k+1)-parameter subsets). As before, all the remaining (k+1)-para-
meter subsets of R fall into t classes which are translates of one another
such that each class consists of the set of (k+1)-parameter subsets of a
paranieter subset R' of R. We choose one of these t classes and recolor thes
(k+1) -parameter subsets in this class using r‘t2 colors according to the way

that the corresponding translates are rt-colored.

We iterate this process for a large number of steps (the exact
numbers need not concern us here) and we then are faced with the following
interesting configuration, We have a very large parameter set S and a large
set of directions so that the color of any {k+1)-parameter set which crosses in
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any of the specified directions depends only on the directions in which it
crosses. The (k+1)-parameter sets which do not cross in any of these
directions naturally fall into parallel classes, each class being the set of
(k+1) -parameter subsets of some (still large) parameter subset T of S.
There is a natural correspondence we can make between this configuration and
a large parameter set S in which the "points" of the S correspond to these
various parameter subsets T. These "points" of 8 may be colored according
to the way in which the (ordered) set of (k+1)-parameter sets in the
corresponding subset T are colored (using a number of colors depending only
on r,t and the number of parameters inT ). By the Theorem for the case
k=0, £ =1 we can extract a 1-parameter subset 61 of S all of whose O-

parameter subsets are the same color.

This corresponds in S to a set of t "parallel" large parameter
subsets T;, 41<i=t, all of whose corresponding (k+1)-parameter subsets
have the same color and such that (by the iterative construction) all (k+1) -
parameter sets of L':JT;_ which intersect more than one T; have the same color,
say, the {th color, By the choice of v,,, the T; have so many parameters
that either for some j+# L one of them (and therefore all of them) contains a
t;-parameter subset all of whose (k+1) -parameter subsets have the jth
color and we are done or each contains a (t;-1) -parameter subset all of

h

whose (k+1)-parameter subsets have the it" color.

However, the union of these t (t;-1)-parameter sets exactly forms
a t; -parameter set all of whose (k+1)-parameter subsets have the ith color

and we are also done. This completes the proof of the Theorem.

SOME APPLICATIONS

In this section we present several corollaries to the Theorem,
the most well-known of these perhaps being the theorem of van der Waerden on
arithmetic progressions (Corollary 7). Other corollaries are new, in

particular, the results for affine and vector spaces, which we present first.
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The way in which most of the results follow from the Theorem is relatively
straightforward and the actual values of the assorted variables needed for the

derivations will not be given.

Corollary 1: Let {,r be positive integers, k=0 or 4, and
F= GF(q) a finite field. Then there is an integer N = N(q,r,%,k), depending
onlyon q,r,4 and k with the following property: If A is an affine space
over F of dimension nz N, and if all the k-dimensional affine subspaces of
A are r-colored in any way, then there is some {-dimensional affine subspace

of A with all of its k -dimensional affine subspaces the same color,

Corollary 2: Let 4,r be positive integers, F = GF(q) a finite
field and k = O or 1. Then there is a number N = N(q,r,%,k), depending
onlyon q,r,{ and k with the following property: If V is an n-dimensional
vector space with n 2 N, and if the k -dimensional vector subspaces of V are
r-colored in any way, then there is an 4-dimensional vector subspace of V

with all of its k-dimensional vector subspaces one color.

Remark: The last corollary (Rota’s conjecture for k=0,1) is
also true for k =2 . This result is not a direct corollary of the Theorem, but

follows from Corollary 1 by an inductive argument, which can be found in [8].

This argument, in fact, shows that if the affine analogue is true for
some fixed k, and all q,r, ¢, then Rota’ s conjecture is true for k +1, and

all q,r, 4.

Corollary 3: Given integers { and r, there exists an integer
N(L,r) suchthat if S is a finite set with |S|2 N(L,r) and the subsets of §
are r-colored, then there exist 4 disjoint nonempty subsets Sy...., S(’, of S

such that all 2%~ 1 unions .UJ_SJ-, g+3<i4,2,...,4}, are one color.
J€

Corollary 4: (J. Folkman, J. Sanders [10], R. Rado [6])
Given integers { and r, there exists an integer N'( £,r) such that if n2N{,r)

and the positive integers <n are r-colored then there exists 4 integers
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L

@qy--,Qy such that all the sums { Z1 ga;:e; =0 ori, notall g; = 0}
L=
are one color.

The case 4 =2 or Corollary 4 was first proved by Schur [11].
Corollary 4 is actually a special case of the following corollary, which is

contained in a result of R. Rado [5].

Corollary 5: Let L=L;(%y,...,8 ), 1€{<n, bea
system of homogeneous linear equations with real coefficients with the
propertv that for each j, 1<j<m, there exists a solution (eyrhe,,)
to the system £ with ¢; =0 or 1 and g = 1. Then given an integer r there
exists an integer N(r) such that if n2 N(r) and the positive integers < n

are r-colored, then £ can be solved with integers of one color.

By a multigrade of order m we mean two disjoint sets of integers
fcit, 1d;}, 1<i<n, suchthat

n n
Z_C‘E:Z_d.‘s, for k =1,2,...,m.
=1

i=t

We denote this by

Since {ac;+btl, {ad;+b}, 1<i<m, is a multigrade of order n
if {c;3, {d;}, 1= t<n, is, then a straightforward application of the

Theorem along the lines used in the preceding corollaries yields

Corollary 6: If the multigrade equations

€D Xyr--er Xy Yy Yy

have any integer solution (which always happens, for example, if n = 2m-1 ’
then for any r-coloring of the positive integers, (%) always has a solution in

integers of one color,
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Corollary 7: (van der Waerden [4,12])Given integers t and
r, there exists an integer M(t,r) suchthatif n= M(t,r) and the non-
negative integers < n are arbitrarily r -colored, then there must exist a

monochromatic arithmetic progression of length t,
This result is implied by the stronger

Corollary 8: (Hales-Jewett [3]) Let A = {ay,-ha,} bea
finite set, Given an integer r there exists an integer N(r,t) such that if
nzN(r,t) and the set A" is r-colored then there exists a set of t elements

of A" of the form
n .
X; = ("11""’*m’O'L’*u""'"'2v’“i.""’ai’°"d.1""’*d.z)eA , 1sist,

all of which have the same color,
We conclude with a final (stronger) application of the Theorem.

Let C, = {(x,,...,x,n) : X; =0 or 1} be the set of 2" vertices
of a unit n-cube in R", Let us call a subset QK& C, a k-subspace of C, if

Ile = 2k and Qk is contained in some k-dimensional euclidean subspace of Rn.

Corollary 9: Given integers k,{,r, there exists an integer
N(k,2,r) suchthat if n = N(k,%,r) and the k-subspaces of C,, are r-colored,

then there exists an 4 -subspace of C,, all of whose k-subspaces are one color,

CONCLUDING REMARKS
Several questions come.to mind at this point.

(i) In the corollaries of the Theorem listed, we never really make
much use of the freedom we have in choosing B and H. What are some

interesting applications for some less trivial choices of B and H ?

(ii) Are the various infinite versions of certain of the corollaries
valid? A specific simple case would be: If the positive integers are 2-colored,

is it true that there always exists an infinite subset A such that all sums
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2 b, ¢+ BSA, B -finite,
bed

are one color?

(iii) The reader will notice that the original theorem of Ramsey
(for subsets of finite set) does not appear as a corollary to the Theorem. Is
there a more general theorem which includes both of these results in a natural
way? In a certain sense, Ramsey’ s theorem for sets corresponds to taking
t =1 inthe Theorem (something which we are prohibited from doing), much

in the spirit found in the paper of Goldman and Rota [1] on finite vector spaces.

(iv) With respect to the corollaries, the upper bounds given by the
Theorem on the various N’s are rather crude, to say the least. Is it possible
to improve the estimates of these numbers? For example, in Corollary 9, the
upper bound on N(1,2,2) given by the Theorem is truly enormous, where, in
fact, the exact bound is probably < 10 .

(v) It was suggested by M. Simonovits that perhaps it would be
possible to give an intrinsic definition of k-parameter sets, i.e., one which
does not depend on coordinates, If this is possible then conceivably the

corresponding proofs might become simpler.

(vi) Our particular definition of k-parameter set was chosen, to a
certain extent, because a Ramsey theorem for them could be proved. What
other definitions will have this property? In particular, can a suitable one be
found which will establish Rota’ s original conjecture for k -subspaces of finite

vector space, k23 ?
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