ROTA'S GEOMETRIC ANALOGUE TO RAMSEY'S THEOREM

R. L. GRAHAM AND B. ROTHSCHILD

1. Let $L = \{L_i \mid i = 0, 1, 2, ...\}$ be a class of geometric lattices. For integers $k \ge 0$, t > 0 consider the statement:

L(k, r, t). There is an integer $N = N_1(k, r, t)$, depending only on k, r, t, such that if $n \ge N$, and if the elements of L_n of rank r are colored with t colors, then there is an element x of rank k such that all the elements y of rank r with $y \le x$ have the same color.

If we let $L_i = L(S_i)$, the subset lattice of a set S_i of i elements, then this statement, which we denote in this case by S(k, r, t), becomes Ramsey's theorem for k, r, t. Rota has conjectured that if one chooses the L_i to be $P_i(q)$, the lattice of subspaces of an i-dimensional vector space over GF(q) (or equivalently, the lattice of projective subspaces of an (i-1)-dimensional projective space), then the corresponding statement, denoted in this case by $P_q(k, r, t)$, is also true. The conjecture

will appear elsewhere.

2. First we consider another statement, namely $A_q(k, r, t)$, by which we mean L(k, r, t) with $L_i = A_i(q)$, the subspace lattice of an affine (i-1)-dimensional space over GF(q). Using the well-known relationship between the affine and projective

is true for r=1 and any k, t and q. We will indicate part of the proof here. Details

lattices (see the lemma below) we reduce P_q to A_q , of which the case r=1 is proved. There are in fact three results we can obtain from the relationship, namely:

THEOREM 1. $P_a(k, r, t) \Rightarrow A_a(k, r, t)$.

THEOREM 2. $A_a(k+1, r+1, t) \Rightarrow P_a(k, r, t)$.

THEOREM 3. $\forall k \ A_a(k, r, t) \Rightarrow \forall k \ P_a(k, r, t)$.

Theorems 1 and 2 provide information about the relationship of the corresponding numbers N for the affine and projective cases. But it is clearly Theorem 3 that is necessary to reduce the projective to the affine problem for r=1, and thus we sketch a proof of Theorem 3 below.

- 3. Lemma. Let x be a dual atom of $P_n(q)$ (i.e. an (n-2)-dimensional hyperplane). Let $P_{n-1} = \{y \mid y \le x\}$, $A_n = \{y \mid y \le x \text{ or } y = 0\}$. Then:
 - (a) P_{n-1} with the induced order is isomorphic to $P_{n-1}(q)$.
 - (b) A_n with the induced order is isomorphic to $A_n(q)$.
- (c) For each $y \in P_{n-1}$, there is a $z \in A_n$ with $y \le z$ and the rank of z one greater than the rank of y.
 - (d) For each $z \neq 0$, $z \in A_n$, the rank of $z \wedge x$ is one less than the rank of z.
- 4. We now indicate a proof of Theorem 3. Assume $A_q(k, r, t)$ for all k. Let l_1 be a large integer. Then the lemma and $A_q(l_1, r, t)$ imply that if we color with t colors all the rank r elements of $P_n(q)$ for sufficiently large n, then (with A_n , x and P_{n-1} as in the lemma) there is an element of u_1 of rank l_1 in A_n such that all rank r elements p of $p_n(q)$ that the same color. That is, $p_n(q)$ contains an element u_1 of rank l_1 such that when one divides $P_{l_1} = \{y \mid y \le u_1\}$ into $P_{l_1-1} = \{y \mid y \le u_1 \land x\}$ and $p_1 = \{y \mid y \le u_1, y \le u_1, x \le u_1 \land x\}$ or $p_1 = \{y \mid y \le u_1\}$ is isomorphic to $p_1 = \{y \mid y \le u_1\}$ and $p_1 = \{y \mid y \le u_1\}$ have the same color. By the lemma $p_1 = \{y \mid y \le u_1\}$ instead of $p_1 = \{y \mid y \le u_1\}$ and $p_2 = \{y \mid y \le u_1\}$ hence we can apply these same arguments to $p_2 = \{y \mid y \le u_1\}$ instead of $p_2 = \{y \mid y \le u_1\}$ instead of $p_3 = \{y \mid y \le u_1\}$ ins

So if we let l_2 be a large integer, and if l_1 is sufficiently large, then P_{l_1-1} contains an element u_2 of rank l_2 such that $P_{l_2} = \{y \mid y \le u_2\}$ is isomorphic to $P_{l_2}(q)$, and it is divided into P_{l_2-1} and A_{l_2} , as in the lemma, with all rank r elements of A_{l_2} having the same color (but not necessarily the same as the color for A_{l_1}). (See Figure 1.)

We repeat this argument, say, $m=k_0(t-1)+1$ times, for an arbitrary k_0 . Then this gives a sequence of pairs

$$(A_{l_1}, P_{l_1-1}), (A_{l_2}, P_{l_2-1}), \ldots, (A_{l_m}, P_{l_m-1}),$$

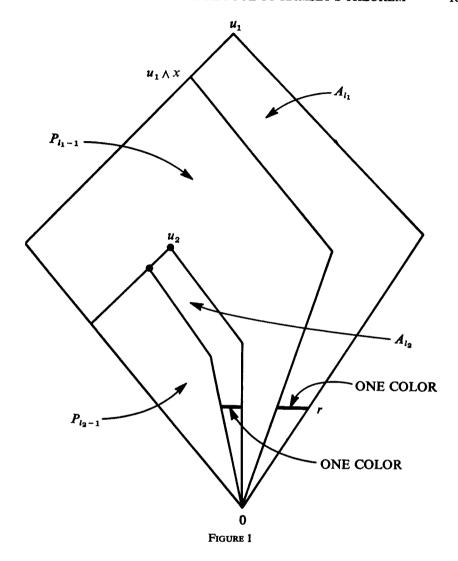
where $P_{l_{i-1}} \supseteq A_{l_{i+1}} \cup P_{l_{i+1}-1}$, and all the rank r elements of A_{l_i} have the same color (depending on i). But since there are only t colors, then one of them must occur k_0 times. So by renumbering, we obtain a sequence

$$(A_{m_1}, P_{m_1-1}), (A_{m_2}, P_{m_2-1}), \ldots, (A_{m_{k_0}}, P_{m_{k_0}-1})$$

with $P_{m_{i-1}} \supseteq A_{m_{i+1}} \cup P_{m_{i+1}-1}$, and with all the elements of any of the A_{m_i} of rank r having the same color.

Now we use part (c) of the lemma to find elements $a_1 \in A_{m_{k_0}}$, $a_2 \in A_{m_{k_0}-1}$, ..., $a_{k_0} \in A_{m_1}$ with $a_i > a_{i-1}$ for all i, and each a_i of rank i. Using part (d) of the lemma, we see that any y of rank r with $y \le a_{k_0}$ is in A_{m_i} for some i. Hence all such y have the same color, and the element a_{k_0} establishes $P_q(k_0, r, t)$. Since k_0 was arbitrary, Theorem 3 is proved.

5. We note that if we consider $L(S_n)$ instead of $P_n(q)$ in the lemma, $L(S_{n-1})$ instead of P_{n-1} , and $L'(S_{n-1})$ instead of $A_n(q)$, where $L'(S_{n-1})$ is $L(S_{n-1})$ with an extra element appended below everything else, then the statements (a), (b), (c), (d) are still true. So the proof of Theorem 3 is still valid. But since coloring rank r



elements of $L'(S_{n-1})$ is equivalent to coloring rank r-1 elements of $L(S_{n-1})$, we obtain:

THEOREM 3'. $\forall k \ S(k, r-1, t) \Rightarrow \forall k \ S(k, r, t)$.

This is just the induction step in the proof of Ramsey's theorem.

6. Finally, we state the result from which one proves A(k, 1, t) for all k.

THEOREM 4. Let F be a finite set, and let $A = \{A_1, \ldots, A_r\}$ be a set of m-lists of elements of F. For each t there is a number N = N(t, r, m) such that for $n \ge N$ and any

coloring of the n-lists of F with t colors there are numbers $m_1, m_2, \ldots, m_d, d \ge 2$, and n-lists

$$B_{i} = (x_{11}, \ldots, x_{1m_{1}}, A_{i}, x_{21}, \ldots, x_{2m_{2}}, A_{i}, \ldots, x_{d-1, m_{d-1}}, A_{i}, x_{d1}, \ldots, x_{dm_{d}}),$$

$$i = 1, 2, \ldots, r,$$

which all have the same color.

This result somewhat generalizes one of Hales and Jewett [1]. It uses arguments exactly like those used in proving van der Waerden's theorem. In fact both A(k, 1, t) and van der Waerden's theorem are immediate corollaries of Theorem 4. To get A(k, 1, t), we let F = GF(q) and $A = \{all (k-1)-lists of F\}$. Then the B_i of Theorem 4 are the points (r=1) of an affine subspace of dimension k-1. To get van der Waerden's theorem, let $F = \{0, 1, 2, \ldots, l-1\}$, and let $m=1, A=\{0, 1, \ldots, l-1\}$. Then if we think of n-lists as representations of integers in base l, the B_i form a length l arithmetic subprogression.

REFERENCES

- 1. A. W. Hales and R. I. Jewett, *Regularity and positional games*, Trans. Amer. Math. Soc. 106 (1963), 222-229. MR 26 #1265.
- 2. B. Rothschild, A generalization of Ramsey's theorem and a conjecture of Rota, Ph.D. Thesis, Yale University, New Haven, Conn., 1967.

BELL TELEPHONE LABORATORIES, MURRAY HILL, NEW JERSEY MASSACHUSETTS INSTITUTE OF TECHNOLOGY