ROTA’S GEOMETRIC ANALOGUE TO
RAMSEY’S THEOREM

R. L. GRAHAM AND B. ROTHSCHILD

1. Let L={L,|i=0,1,2,...} be a class of geometric lattices. For integers k >0,
r=0, >0 consider the statement:

L(k, r, t). There is an integer N=N(k, r, t), depending only on k, r, ¢,
such that if n> N, and if the elements of L, of rank r are colored with ¢
colors, then there is an element x of rank k such that all the elements y of
rank r with y < x have the same color.

If we let L,=L(S;), the subset lattice of a set S, of i elements, then this statement,
which we denote in this case by S(k, r, t), becomes Ramsey’s theorem for k, r, t.

Rota has conjectured that if one chooses the L, to be P(q), the lattice of sub-
spaces of an i-dimensional vector space over GF(q) (or equivalently, the lattice of
projective subspaces of an (i— 1)-dimensional projective space), then the corre-
sponding statement, denoted in this case by P,(k, r, t), is also true. The conjecture
is true for r=1 and any k, ¢ and g. We will indicate part of the proof here. Details
will appear elsewhere.

2. First we consider another statement, namely A4,(k, r, t), by which we mean
L(k, r, t) with L,= A,(q), the subspace lattice of an affine (i— 1)-dimensional space
over GF(g). Using the well-known relationship between the affine and projective
lattices (see the lemma below) we reduce P, to A,, of which the case r=1 is proved.

There are in fact three results we can obtain from the relationship, namely:

THEOREM 1. Pk, r, t) = ALk, r, t).

THEOREM 2. A (k+1,r+1,1) = Pk, r, ).

THEOREM 3. Yk Ak, r, t) = Yk Pk, r, t).

Theorems 1 and 2 provide information about the relationship of the correspond-
ing numbers N for the affine and projective cases. But it is clearly Theorem 3 that

is necessary to reduce the projective to the affine problem for r=1, and thus we
sketch a proof of Theorem 3 below.
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3. LemMA. Let x be a dual atom of P,(q) (i.e. an (n—2)-dimensional hyperplane).
Let P,_\={y | y<x}, An={y | y£x or y=0}. Then:

(@) Pn_1 with the induced order is isomorphic to P,_,(q).

(b) A, with the induced order is isomorphic to A,(q).

(c) For each y € P,_,, there is a z € A, with y<z and the rank of z one greater
than the rank of y.

(d) For each z+#0, z € A,, the rank of z A x is one less than the rank of z.

4. We now indicate a proof of Theorem 3. Assume A,(k, r, t) for all k. Let /; be a
large integer. Then the lemma and 4 ,(/,, r, t) imply that if we color with ¢ colors all
the rank r elements of P,(g) for sufficiently large n, then (with Ay, xand P,_; asin
the lemma) there is an element of u, of rank /, in 4, such that all rank 7 elements ¥y
of A, with y <u, have the same color. That is, P,(q) contains an element u; of rank
I, such that when one divides P, ={y | y<u,} into P _,={y| y<u; Ax} and
Ay, ={y | y<u,, y$u, Ax or y=0} as in the lemma, then all the rank r elements of
A, have the same color. By the lemma P,, _, is isomorphic to Py, _1(q) and 4, to
4,,(q). Hence we can apply these same arguments to P, _, instead of P,(q).

So if we let I, be a large integer, and if /, is sufficiently large, then P;, _; contains
an element u, of rank /; such that P,,={y | y <uy} is isomorphic to P.(q), and it is
divided into P;,_, and 4,,, as in the lemma, with all rank r elements of A,, having
the same color (but not necessarily the same as the color for Ay). (See Figure 1.)

We repeat this argument, say, m=~kq(t—1)+1 times, for an arbitrary k,. Then
this gives a sequence of pairs

(Alp Pll—l)’ (Alm Plz—l)s S ] (Al,,.’ Pl,,.—l),

where Py, _124,,, U P, _,, and all the rank r elements of 4, have the same
color (depending on #). But since there are only # colors, then one of them must
occur k, times. So by renumbering, we obtain a sequence

(Amp Pm1 —l)a (Amg’ sz—l)’ ey (Am,,o, Pmko—l)

with Py, _12A4p,,, U Py,,,_;, and with all the elements of any of the Ay, of rank r
having the same color.

Now we use part (c) of the lemma to find elements a; € Anyy 2 € Ayy-15 -+ -»
@y, € Am, With a,>a,_, for all i, and each g, of rank i. Using part (d) of the lemma,
we see that any y of rank r with y <a,, is in 4,, for some i. Hence all such y have
the same color, and the element gy, establishes P(k,, r, t). Since k, was arbitrary,
Theorem 3 is proved.

5. We note that if we consider L(S,) instead of P,(q) in the lemma, L(S,_,)
instead of P,_y, and L'(S,_,) instead of A4,(g), where L'(S,~,) is L(S,.,) with an
extra element appended below everything else, then the statements (a), (b), (c), (d)
are still true. So the proof of Theorem 3 is still valid. But since coloring rank r
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elements of L'(S,_,) is equivalent to coloring rank r—1 elements of L(S,_,), we
obtain:

THEOREM 3'. Vk S(k,r—1,1) = Vk S(k, r, 1).
This is just the induction step in the proof of Ramsey’s theorem.
6. Finally, we state the result from which one proves A(k, 1, ¢) for all k.

THEOREM 4. Let F be a finite set, and let A={A,, ..., A,} be a set of m-lists of
elements of F. For each t there is a number N= N(t, r, m) such that for n> N and any
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coloring of the n-lists of F with t colors there are numbers my,my,...,my,d>2, and

n-lists

B, = (x11,..., X1mys Ais Xo15 + - -y Xomgs Ais .+ - -5 Xa-1.mg-1> Ais Xa1s - - -5 xdm.,),
i=1,2,...,r,

which all have the same color.

This result somewhat generalizes one of Hales and Jewett [1]. It uses arguments
exactly like those used in proving van der Waerden’s theorem. In fact both
A(k, 1, t) and van der Waerden’s theorem are immediate corollaries of Theorem 4.
To get A(k, 1, t), we let F=GF(q) and 4={all (k— 1)-lists of F}. Then the B, of
Theorem 4 are the points (r=1) of an affine subspace of dimension k—1. To get
van der Waerden’s theorem, let F={0, 1,2, ..., /- 1}, and let m=1, 4={0, 1, ...
I—1}. Then if we think of n-lists as representations of integers in base /, the B, form
a length / arithmetic subprogression.
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