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INTRODUCTION

Given a set S of real numbers, it is natural to
inquire as to the structure of the set of all real numbers
which can be formed by taking sums of elements from S. In
particular, one may require that the sums be finite sums
although a substantial amount of work has been done for
the case of infinite sums, e.g., in the study of generalized
limits and summability.

We shall be primarily concerned with the case in
which S is a set of positive integers although, again, a
number of interesting results are available when S consists
of unit fractions, for example, as well as for other special
sets (cf. [12], [16], [17], [18], [(42]). Henceforth, unless

specified otherwise, we shall assume S = [sl,se,...] is a
V(possibly finite) set of positive integers. In general, we

are forming

Z(s) = Sy ¢ Qe is a nonnegative integer, Ez Q. <

00 e t
k=1 k=1

Of course, this is just the subsemigroup generated by S
considered as a subset of the commutative semigroup of

positive integers under addition.



There are several directions one might proceeqd.

1. No additional restrictions on the Q-+ In this case it

is well-known [35] that 2(S) consists of all sufficiently
large multiples of gcd(sl,sg,...). When this ged is 1,
then 2(S) contains all sufficiently large integers and we
let 8(S) denote the largest integer not in Z(S). The
determination of 6(S) seems to be a difficult question in
general ([2], [24], [27], [35]). 1r s - {a,b} with
ged(a,b) = 1 then 6(S) = ab - a - p ([35]1). However, 6(S)
is not known for even the set {a,b,c) with gcd(a,b,c) = 1

although other special cases are known, e.g., for
S = (n,n+l,n+2,n+6], 6(s) = n{g] + 2[2] + 2[2%&} + 5[952]

+ [E%i} + [E%EJ + [Q%QJ -1 (cf. [35]). Other special

cases for which 6(S) is known include the following
([10]): For a given k > 0, let

S = {0« 81 < ... < 8, = 2n+k}. Then for n sufficiently

large,

2n + 4k -1 for n -k = 1(3)

6(3) <
(8) < ’2n +4 +1 for n-x#1(3)

and this bound is best possible. However, we shall not

- bursue this topic further in this paper.
o0
2. For some given m, }Z Qe £ M. In this case, if
k=1
6(S) = 0, S is known as & basis of order m. A number of
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strong results have been established in this area, beginning
with Lagrange's theorem that the squares from a basis of
order 4 and Hilbert's proof of the Waring conjecture that
the n*P powers form a basis of order m for some m = g(n) ([231).
More recently, the names of Erdos, Kneser, Linnik, Mann, and
Vinogradov, among others, have been prominent in connection
with this subject (cf. [22]), but space does not permit us
to pursue this further. For the reader who would like to
have his name added to this distinguished list, I might
suggest that he show that the set of primes together with

1 forms a basis of order 3.

3. All o are O or 1. It is this case we wish to make

the main topic of the paper. We make a slight modification

in our notation. For the sequence S = (sl,se,...) let

o0 0

}; €Sk ' & = O or 1, E: g < ®

k=1 k=1
S complete if all sufficiently large integers belong to

P(S) = Let us call

P(S). (In this case 6(S) has the obvious meaning.) Finally,

call S strongly complete if S remains complete after any

finite number of terms have been deleted from S.

Note that a sequence which forms a basis of order
m can only grow algebraicly, whereas a compléte sequence may
grow exponentially, e.g., Sy = ol Thus, the set of complete
sequences is (in fact) much richer than the set of bases.
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COMPLETE SEQUENCES

The first results in thisg area were establisheqg

by R. Sprague in 1948, For the sequence § - (sl

Sprague showed [41] that for Sy = ne, S 1s complete with thresholqg

PPV

6(S) = 128. Further, using results of the Tarry-Escott
problem, he proved [42] that for each k, the sequence defined
by Sy = nk is complete.

These methods were also employed by E. Krubeck
in 1953 [29] to show that for any polynomial f(x) with
integer coefficients ang positive leading coefficient, if
the sequence § is defined by S, = f(n) then the difference

between consecutive elements of P(S) is bounded. (More

The results of [42] were also generalized by
H.-E. Richert [38]. Basically, he showed that if g
sufficiently long segment of integers belongs to P(S)-and
S does not grow too irregularly then S is complete. Richert
used this to establish 6(S) = 33 for s, .= Ei%;ll [38] and
6(S) = 6 when S is the Sequence of primes [37].

In 1952, c. q. Lekkerkerker [30] pointed out that
the well known Séquence of Fibonacci numbers, given by
§ = Sy = 1, Sn+2 = Sn+l + Sps is not only complete but,
in fact, each positive integer has g unique representation

in the form Zsksk where €k5k+l = 0. Further exXtensions in

this direction may be found in [3], (71, [25], [26], [28].
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Up to this point the results discussed have been
limited either by the very special properties required of
S or by the fact that it is necessary to hypothesize that
P(S) contains a long segment of integers before completeness
can be established. These restrictions make it difficult
to show, for example, that a sequence is strongly complete.
The first strong result concerning complete
sequences was given by K. F. Roth and G. Szekeres in

1954 [39]. They proved that if S is eventually increasing

then the following two conditions imply that S is complete:

(i) 1im log sp/log k exists;
k= x

k
(1i) inf 1(log k)‘l z Hsicz“s‘ = o as k - o,
e i=1
where ||6]| denotes the distance of 6 to the nearest

integer and sk/2 < aZgl/2,

In fact, with the use of a saddle~-point method,
an asymptotic formula for the number of representations of
n as an element of P(S) is derived in [39]. Note that the

above conditions imply S is strongly complete. In particular,

it follows (using results of L. K. Hua to verify (ii)) that

if £ is a polynomial mapping integers to integers with a
positive leading coefficient and such that for all primes
P there exists an m such that p \ mf(m) then the sequence

(f(pl),f(pg),...) is strongly complete where P, denotes the

nth prime.
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The next advance was made by B. J. Birch [1] in
1959 who showed that for relatively prime integers p and q
(greater than 1), the increasing sequence formed from all
the terms paqb, with a and b > O, 1s complete. His proof
is elementary and séttles a conjecture made earlier by
Erdos.

The following year a far-reaching generalization
of Birch's result was published by J. W. S. Cassels [6].
For an increasing sequence S, let S(n) denote the number of
terms of S not exceeding n. Cassels' result can be stated
as follows: Supposels = (31’82"") is an increasing sequence

of positive integers satisfying

S(2n) - s(n)
¥* — .
(*) iiﬁz log log n ~ 3

oo

(%) Z llspall = » for all a e (0,1).
k=1
Then S is strongly complete.

The proof given by Cassels is ingenious and uses
the Hardy-Littlewood method. The conditions (*) and (%)
bear a certain similarity to the conditions (1) and (ii) of
Roth and Szerkeres [39] although Cassels was unaware of their
~results at the time his paper was written. Not only does
this theorem imply the result of Birch, it also shows that
for any polynomial f mapping integers to integers the

sequence given by s = f(n) is strongly complete provided
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only that f satisfies the obvious necessary conditions,

i.e., £ has a positive leading coefficient and no prime divides
all the function values f(n). Furthermore, Cassels' theorem
applies to sequences which grow rapidly, e.g., such that

1-8)) e > 0.

s, ~ exp((n/log n)
In 1962, the author gave a number of theorems

dealing with complete sequences, several of which will now be

mentioned. All polynomials f mapping reals to reals for

which S(f) = (f(1),f(2),...) is complete were characterized
' n
in [15]. Specifically, if f(x) is expressed as }i ak(ﬁ)
k=0
then S(f) is complete if and only if:

(1) ap = pk/qk for integers p,,q, with (pk’qk) =1
and Q. # 0, 0< k ¢ nj
() a, > 0;
(3) &ed(pgysPys---5Py,) = 1.
This proof is elementary.

It had been conjectured by Erdos [9] that if
t> 0, 1< ac< 2, the sequence S(t,a) defined by s, = [ta™]
is complete. It was shown in [14] that this is not quite
correct, e.g., S(l,a) is complete if and only if
1 <{ac< 5%5 . The subset R of the square 0 < t ¢ 1,

1 < ag 2, for which S(t,a) is complete was determined
in [14]. R is rather complicated; for example, for any k
there are vertical lines L such that R! 'L has more than k

components.
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In [19] it was shown that the sequence S given by
s, = F, - (-1)® (where F_ 1is the nth Fibonacci number) is
strongly complete but fails to remain complete if any
infinite subsequence is removed. Very few sequences are
currently known to enjoy this unlikely property. This
proof in [19] is elementary but somewhat involved.

Also in 1962, Erdcs [8] proved the following
theorem dealing with slowly growing sequences. Suppose
S = (sl,sz,...) is a strictly increasing sequence of positive
integers satisfying

(1) For some o ¢ (/5 + 1)/2, and some c, s, < en?.
(1i) P(S) contains an element from every arithmetic

progression.
Then S is complete.

Erdos further conjectured that this would be true
if s, were only required to satisfy 8h < c:ng"E for some ¢ > 0.

This conjecture was settled by Jon Folkman in
1966 [13] in a very ingenious paper in which the following
result is established. Suppose S is a nondecreasing sequence
satisfying (1) or a strictly increasing sequence satisfying

(2) for some ¢ and some a, 0 ¢ a < 1:

(1) s, < en%;

(2) s, < entte,
Then P(S) contains an infinite arithmetic progression.
Furthermore if P(S) intersects every arithmetic progression

then S is complete.



Folkman's proof is elementary and quite clever.

In 1968, S. A. Burr [5], using the results of
[13], showed that if s, = £f(n) + t(n) where f is a
polynomial of degree > 1 and having a positive leading
coefficient and for some B8, 0 { B < 1/2, t(n) = O(na),
then P(S) contains an infinite arithmetic progression.
Further, if for all primes p, there exist infinitely many
Sic not divisible by p then S is strongly complete. Thus,
if polynomial sequences are perturbed slightly, completeness
properties are not significantly affected.

However, the following was recently established by

Erdds [9]: For any sequence S of positive integers, if g is

any positive function for whickar 1/g(n) < « then there exists
—
n

a sequence S! such that Isn-s;| < g(n) for n sufficiently large

and P(S’) does not contain an infinite arithmetic progression.
It follows in particular that if a sequence of polynomial values
f(n) is perturbed by as much as O(n1+€) then completeness
properties may be significantly affected.
In this same direction, J. W. S. Cassels [6]
established the following result. For every £ > 0O and
N> O there exists a sequence S containing infinitely many
terms in every arithmetic progression such that
1
_+ . .
Sp4l - Sp = O(sﬁ ﬂ) and P(S) contains less than ex integers
£ x for all sufficiently large x. It also follows from his
ni
arguments that if f(x) = ji akxk is a monic polynomial
k=0



defining a P-V number (cf. [36]) then any sequence S
n

satisfying ;z ‘1Kst+k =0, t > 0, is not strongly complete.
k=0

This includes, for example, the case S, = Fn Or even finite
repetitions of this s€équence. It is true though that if
each term is repeated sufficiently often (varying with the
term) then the Sequence is strongly complete. For example,
in a recent note of Erdos and the author [11], it is shown
that for the sequence S formed by taking m,_ copies of Fk’
if m (2/(1 +~/§))k decreases then S is strongly complete

00

if and only if }Z m, (2/(1 +~/§))k = @. On the other hand,
k=1
it is always true that S is not strongly complete if

oo

Z m (2/(1 +./5))% < .
k=1

An alternative approach to some of these sequences
has recently been given by S. A. Burr [4] in which a computer
is used to provide the induction step needed in the proof of
the lack of strong completeness. Thus, it is seen that even
rather well-behaved sequences may fail to be complete.

If S = (31:52’-'°) i1s strongly complete then for
each n, Gs(n), the greatest integer which does not belong
to P((Sn+l’sn+2""))’ 1s a well-defined integer. The
study of the dependence of Gs(n) on n seems to be very
difficult, even for relatively simple sequences S. TFor

example, if S is the sequence of squares, then it has been
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shown by Ju. v. Linnik and the author [21] that for

k =1,2,..., the sequence of functions

84 (45x) .
gk(x) = WQPQ:FT » L < x U4, ¥x an integer, converges to

a function g(x), 1 ¢ x ¢4, which is the union of a (large)

finite number of portions of parabolas. In particular,

g(x) lies between 4 and 5 and, in fact, attains the value
5 exactly 18 times for 1 LxK L, The proofs rely on deep
results of Linnik [32] and A. V. Maly¥ev [33], [34] on the
distribution of lattice points on quadratic surfaces in
4 and more dimensions.

Computer results of Lin [31] indicate that
GS(n)/s

the increasing sequence of primes, Gs(n)/sn appears to be

n often seems to approach a limit, e.g., when S is

tending to 3. Of course, lim es(n)/sn = 3 would imply the
n

well known Goldbach conjecture. A few isolated values of

645(1) are known (cf. [31], [20]), some of which are listed

below.



\N
\N

5 65(1)
algt) 33
n® 128
n® 41 51
n2 + 2 91
n® + 3 120
n® + 4 92
n® + 5 117
(n+l)2 -1 156
n3 12758
n3 1 8293
n*t 5134240
a(n+l) + b i§-2)g(a+l) +ab + 1
with (a,b) = 1

Table 1

Some Values of GS(l)



SOME OPEN QUESTIONS

We conclude with a number of open questions

related to complete sequences.

1. (J. Folkman) Let S = (sl,se,...) be a nondecreasing

sequence of integers which satisfies s, < cn for all n. Does
P(S) contain an infinite arithmetic progression? This is true
if s < cn'” and can fail for s, < enttE5 cr. [13].

2. Let S = (51152"") with s, = [ta"]. For what

pairs (t,a), t > 0, 1 < a < 2, is S complete? For O < t < 1,

‘this is known [14]. Even in the range 1 < t < 2, it is not

~N

known what happens. Conceivably, S is complete for all

1< ac i—%?éi and t > O.

3. For a sequence S let C(n) and N(n) denote the
conditions: '
C(n): If any n entries are removed from S to form
S! then S’ is éomplete.
N(n): If any n entries are removed from S to form
S? then S’ is not complete.

For what values of m ¢ n are there sequences which satisfy

both C(m) and N(n)? For example, S = (1,2,4,...,27,...)

satisfies C(0O) and N(1), while s = (1,1,2,3,5,8,13,...)
satisfies C(1) and N(2). In particular, is there a
sequence which satisfies C(2) and N(3)¢?

b, Let S = (51’52”") be an increasing sequence

thich is strongly complete but such that any subsequence



gr tormed from S by deleting an infinite number of entries
is not complete (e.g., see [19]). What can be said about

the structure of S? For example, is it true

1 +./ _5—
A D 0
/sn - 5 7

5. (P. Erdds) Given £ > 0, is there a strongly complete

Sn+1

sequence 8 = (8y,S,,...) for which 5,41/, > 2 - € for n

sufficiently large? Can Sn+1/sn 22 asn = w?

(S. A. Burr) 6. Suppose S = (Sl’SE"") is a sequence
of positive integers of the form s, = f(n) + 7, where f(x)
is a polynomial and ’n O(n). Is S subcomplete? This is
known to be true if 7n 0(n®"%) (cf. S. A. Burr, On the
completeness of perturbed polynomial values (to appear in
Pac. Jour. of Math.)). On the other hand examples exist
with 7, = O(nl+s) for which S is not subcomplete,

it

7. It is known [18] that the sequence with n®? term

given by s, = n + 1/n is strongly complete. What about
Sy = n® + 1/n? What about s, = f(n) + 1/n where f(n) forms

a strongly complete sequence?

8. Suppose 0<Q.<...<Q < x is a sequence of real numbers with

1l k k
- .
K maximal such that any two sums L eJ as, e, =0or i, differ by
J
J=1
at least 1. It is true that k s %ﬁé"z‘- + 0(1)? (This strengthens a well-

known conjecture of Erdds.)



9. If S= (sl, S «s.) 1s a strongly compleie increasing sequence,

-

iet es (n) denote the iargest integer x for which x ¢ P(s ).

n+l’ Spe2’ "
1t 1s of considerable interest to study the behavior of es (n) for

various sequences S. For the sequence in which B, = n2 , recent results
of R. L. Graham and Ju. V. Linnik show that es’ (n) /Sn asymptotically
oscillates between 4 and 5 in a prédictable but complicated way. For
other sequences, computer results (S. Lin, Computer experiments on
sequences which form integral bases, Computations problems in abstract
algebra, Pergammon Press (1969)) indicate that 1im 8, (n) /Sn = Q

3 for s, = the nth prime.

s

Heo

exists, e.g., as

10, Let p be a prime and suppose 8)5.00,8, are distinet nonzero
elements of Zp. Conjecture: There always exists an arrangement

8, ;es0,8 of the a, such that all partial sums
11 :Lk i

E: & 1 s t < k, are distinct modulo p.
J
j=1

3=
11. Let p be a prime and suppose al,...,ap € Zp such that for some r,

z b =0 (mod p) implies |B| = r. Conjecture: The a, assume
bPEBSA
at most 2 different values,

12. Let @ and B be positive reals with €/ irrational. Let S
denote the sequence ([a], [B], [2a], [28], ..., [2%]), [2"B], ...). Is S

complete? What if 2 is replaced by some vy,1< y< 27
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