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ABSTRACT Ramsey’s Theorem states that for a suffi-
ciently large set S, and for any splitting of the k-element
subsets of S into r classes, there is a subset T' C S, ]Tl =
I, such that all k-element subsets of T are in the same
class. This paper establishes a theorem for certain cate-
gories that generalizes Ramsey’s Theorem. In particular,
it is strong enough to establish G-C. Rota’s conjecture
that the vector space analogue to Ramsey’s Theorem is
true. It also implies the Ramsey theorem for n-parameter
sets, which has as corollaries, among others, the theorem
of van der Waerden on arithmetic progressions and several
results of R. Rado on regularity in systems of linear
equations.

A Ramsey theorem can be proved for certain categories which
generalizes Ramsey’s Theorem (4) for sets and the analogous
theorem for k-parameter sets (1), and establishes G-C.
Rota’s conjectured analogue for finite vector spaces. The
categories must be sufficiently like the category of k-parameter
sets so that the proof of the Ramsey property for this category
can be extended. These notions are made precise below.

We consider only categories C in which the objects are
the nonnegative integers 0,1,2,..., and in which for any
I > k, the set C(l,k) of morphisms from I to k is empty. In
this situation, the subobjects of an object I have an induced

rank, namely, the number % for which a morphism % 2 lisa
representative of the subobject. We call a subobject of rank

k a k-subobject, and we denote by C'I:]lc] the set of all k-sub-

objects of I. We assume that for each £ and [ there is an integer
Yr,1 = Osuch that C[’i]

Let & 2 I be a morphism of €. Then f induces a mapping

= yx,;, and in particular yo,0 = 1.

f: C[]Z] — Cl:i] for each s> 0. An r-coloring of C’[f] isafunc-

tion ¢ : C[i] — {1,. . .,r}. Then f composed with ¢ induces an

r-coloring of C' []Z:l If c¢f has only a single element in its image,

we say that ¢ has a monochromatic I-subobject.
The Ramsey property for Cis:

For a sufficiently large (depending on k,lr) every r-coloring

of Ll: ] has a monochromatic l-subobject.

When the morphisms of C are the monomorphic functions
from {1,...k} into {1,...,l}, then this is just the statement
of Ramsey’s Theorem. When the morphisms of C are the
monomorphic linear transformations from Vi = (uy,... 0
to V; = (vi,...n;), where v, vs,... form a basis for a
vector space V over GF(q), then this is the statement of

Rota’s conjecture. Categories satisfying this property are the
kind of categories referred to in (3).

We consider a stronger version of the Ramsey property
more suitable for an induction argument.

Clk; i,...l,): Thereis a number N = No(; 75 b, . . L),
depending only on k,rl,. .. l, such that for any z > N and

x Cc
k] - {1,...,7'

and a morphism ; kA z such that the following diagram com-
mutes:
1/ x| °
C[k] - C[k:l - {1,...7}

\ inel.
)

Theorem. Let A and B be categories satisfying conditions
I, II and T1II below. If A(k; 1,...,;) holds for all 74i,.. . [,
then Bk + 1;14,...,l;) holdsforallrl,. . .1,

Corollary. Let @ be a class of categories C such that for
every B in @ there isan A in € such that A and B satisfy con-
ditions I, IT, and III. Then C'(k; L,. . .,l;) holds forall C'in @
andallkl,. .. .

With this corollary, we can prove the Ramsey property for
a category C by finding a class @ containing C and satisfying
the conditions of the corollary.

The conditions on A and B are as follows: There is a functor
M from A toBwith M (@) =1+ 1,1 > 0, a functor P from B to
A with P(I) = I,1 > 0, an integer t > 0, and for each I > 0,
¢ morphisms 2+ 1,1 < j < t, satisfying the following:

I.Foreachk 4+ 1= 0,1,2,... thediagonal d in the following
diagram is epie, where II (together with the indicated in-

. . l . l
jections) is the coproduct of A[k] and ¢ copies of B[k + 1],

M is the mapping induced on subobjects by M, and d is
the unique map determined by the coproduct to make the
diagram commute:

any r-coloring C 1, there isand, 1 < ¢ <1,

l
Bk+1 \»u

io

[ﬁ : A[ﬂ
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II. For each s — I in B and each J =1,...t, the following
diagram commutes:

III. Forsomel—> 1 + 1in A4, the following diagram com-
mutes for each j = 1,.. .t

@ l + 1 Pl §

e S

. 142
L2
L+ l/M'r(e)

Very loosely speaking, these conditions say that 4 and B are
connected (by M and P) in such a way that: (I) each I + 1
contains ¢ “translates” of [ such that any (¢ + 1)-subobject
not arising from 4 (by ) must be in one of the translates,
(II) this decomposition is “inherited” by subobjects, and (II1)
the “diagonal’’ composition of two such decompositions is also
one. These conditions correspond closely to the properties of
k-parameter sets given in Remarks 1, 2, and 3 of (1).

To establish Ramsey’s Theorem, we let @ = {c}, the cate-

gory with morphisms & . [ the monomorphic functions from
{1,.. .,k} into{1,...,l}. We then let M (f) be the extension of f
given by M (f) (k + 1) =1+ 1,P(f) = f,t = L,and pu(z) =
z for all z.

To establish Rota’s conjecture, we let € = {Cp:m = 0,-
1,...}, where C,, is defined as follows. Let A and V be
infinite dimensional vector spaces over GF(¢), with bases
@1,Qs, . . . and vivs,. . ., respectively, and for each mlet 4, =
(@1,. .. ,0m), Vi = {v1,...0n). Let C, have morphisms

W, . . .
k —> | where ¢ is a monomorphic linear transformation from
Vi to V; and w is an element of 4,, ® V;. Composition is

wm
effected by (u,¥) (w,¢) = (y,¥e), wherey = u + > a; ®
m i=1
Y(w;) forw = Z a; ® w;. We can think of these morphisms,
i=1
then, as special affine transformations from 4,, ® Vi to 4,, ®
V..

(w,0)
For Cpi1 = A and C,, = B we define M and P. Let ke |
be in Cpy1, where w = 0w’ + apr1 @ Wyr1, ' e 4,y + Vo,
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Wpt1 ¢ V. Then M ((w,0)) = (w',¢"), where ¢’ is the exten-
. (w,p)
sion of ¢ given by letting ¢’ (p+1) = vy+1 -+ Wyr1. For kb —> 1

in Cp, let P((w,p)) = (w,p). Fora ¢ Ay, welet ¢ = (@ @
vyr1, 1) In Cpy, where ¢, is the inclusion map from V;to Vir1.
We note that for m = 0 we obtain the category C, which
establishes the vector space analogue to Ramsey’s Theorem.
We also note that for m = 1 we obtain the category € which
establishes the affine space analogue to Ramsey’s Theorem.
To establish the Ramsey property for k-parameter sets, we
let @ = {Cn:m = 0]1,...} where the C,, are defined as
follows. Let A = {al,az,. . } be an infinite set, and 4,, =
(a1,. . .,an) for each m. Let G be a finite group. Then C,, is

the category with morphisms & is—; { where f is an epimorphic
function from 4,, U {1,... [} onto 4, U (1,. . . k) acting identi-
cally on A, and s is a function from 4,, U {l,A . .,l} into G
which maps 4,, onto the identity element 1 ¢ G. Composi-
tion is given by (g,u) (f,s) = (fg,59-u) where fg and sg are
composition of functions, and sg-u is the function defined by
(sg-u) (x) = s(g(x)) -ulz) « G.

For B = C, and A = C,+1 we define M,P and the ¢’s as

follows. Let & —(f—s—; I be in Cpt1. Then M((f,8)) = (f',s7),
where f'(z) = f(z) if f(z) e 4, U {1,. &}, /() = k + 1if f(z)
=+, /04 1) =k +1,and s'(x) = sx) ifx e 4, U

1€,...D,sl+1)=1eG. If}c—(filisin C,n, then P(f,s) =
(f",s"), where f”(z) = f(z) and s"(z) = s(z)on 4,, U (1,...,D),
" (@m+1) = Qmt1, 8"(ap+1) = 1. Finally, we let ¢ = :AMHG]
and for each land any g e Gand j,1 < 7 < ¢, welet ¢4, =
(@1,142), where djy(x) = 2, 1,,(x) = 1forz e d,, U {1,...l},
and d;;(0 + 1) = a5, 1,0+ 1) = ¢.
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