Acta Informatica 1, 200-213 (1972)
© by Springer-Verlag 1972

Optimal Scheduling for Two-Processor Systems
E. G. CoFFMaN, Jr. and R. L. GRAHAM

Received February 8, 1971

Summary. Despite the recognized potential of multiprocessing little is known
concerning the general problem of finding efficient algorithms which compute minimal-
length schedules for given computations and m =2 processors. In this paper we
formulate a general model of computation structures and exhibit an efficient algorithm
for finding optimal nonpreemptive schedules for these structures on two-processor
systems. We prove that the algorithm gives optimal solutions and discuss its appli-
cation to preemptive scheduling disciplines.

I. Introduction

The efficient utilization of multiprocessor systems is potentially very effective
in decreasing the computation times of many programs. This can be especially
important for real-time applications and for large compute-bound problems.
However, the problem of finding efficient, easily implemented scheduling
algorithms, particularly those whose effectiveness can be demonstrated, has
proved to be difficult [1]. In this paper we present such an algorithm for the
nonpreemptive scheduling of so-called computation graphs on two processors,
We present a proof of its optimality and illustrate the implications the result
has for preemptive scheduling.

We consider systems in which there are two identical processors and assume
that the computations submitted to the system are specified as a finite set G
and a partial order < on G. The elements of G will be called tasks. For T, T'eG,
if T<T' we shall say that T is a predecessor of T’ and that T” is a swccessor
of T. In addition, if there exists no task T7”€G such that T<T'<T then T
will be called an immediate predecessor of T’ and T’ will be called an immediate
successor of T. The set of immediate successors of T will be denoted by S(T7).
With each computation we can associate a directed graph G whose vertices are
the set of tasks*. There is a directed arc from the vertex (task) T; to the vertex
(task) T; if and only if T is an immediate predecessor of T;. An example is shown
in Fig. 1a.

Informally, a schedule or assignment for a given computation is a description
of the work done by each processor as a function of time. Of course the schedule
must not violate** the precedence relations given by the partial order < and
we are not permitted to assign more than one processor to a task or more than
one task to a processor at any time. A simple way of specifying a schedule uses
a Gantt [2] chart, which consists of a time axis for each processor with intervals

* As usual, a graph and its set of vertices will be denoted by the same symbol.
** j e, if fl;-<T] then T must be completed before T, can be begun.

Optimal Scheduling for Two-Processor Systems - 201

marked off and labeled with the name of the task being executed. We use the
symbol @ to denote an idle period. Fig. 1b shows the Gantt chart of a schedule
for the graph of Fig.1a, assuming that all tasks have the same execution time u,
and that the system consists of two processors, F, and F,.

All tasks with equal

G: execution times of u
time units.
T;
a
| T i 1, { T, Tg g
B 1 1 f ' {
0 u 2u 3u 4p Su
BT | L p 5 4, P
[i 1 l 1 1
b

Fig. 1. An example computation and schedule

We shall consider schedules for a graph G according to which of the tasks of G
are executed by B, and P, in the following way. Let L = (13, Ty, ..., T,) denote
some permutation of the tasks of G. L will be called a lis¢ for G. Initially, at time
¢t =0, processor B, begins to execute the first task in L which has no predecessor.
We say that a task 7 is ready at time ¢ if at this time all the predecessors, if any,
of T have already been executed. In general, at any time a processor F is idle,
it (instantaneously) scans the list L and begins to execute that ready task T, with
minimal 1 which has not yet begun to be executed. Once a processor begins to
execute a task T, it continues executing T for exactly one unit of time, after
which the execution of T is completed. That is, all tasks in G are assumed to
have the same execution time, and this is taken to be of unit length. We make
the convention that if both B and P, simultaneously attempt to execute the
same task, then that task is executed by FB,. Note that the schedule in Fig. 1b

202 E. G. Coffman, Jr. and R. L. Graham:

has the properties imposed by the above sequencing procedure for the list
(Ty, Ty, ..., Ty). The length of time required to execute all the tasks of G using
the list L will be denoted by w (L).

Sequencing disciplines of the above type are classified as nonpreemptive
since a task once assigned to a processor must be allowed to run to completion.
However, with preemptive scheduling we are allowed to “interrupt” a processor,
remove the currently assigned (incomplete) task, and assign another task to the
processor in its place. Preempted tasks must be later reassigned until each task
receives an amount of processor time equal to its execution time. In general,
with the preemption capability the overall computation times of graphs can be
reduced. Although the major result of this paper concerns nonpreemptive
scheduling, its application to preemptive scheduling will be discussed in a later
section.

The general scheduling problem for the system we have defined consists of
finding an “efficient” algorithm for sequencing the tasks in a given graph so
that the total execution time is minimized. Of course, the problem is finite so
that it could in principle be solved by an examination of all the possibilities.
However, by an “efficient” algorithm we mean an essentially nonenumerative
one, e.g., one which requires a number of steps which is algebraic in the number
of tasks of G as opposed to being exponential in this number. Our approach to
this problem consists of defining an algorithm that produces a list L* such that
the schedule generated by L* has minimal length, i.e., o (L*) Sw(L) for any
list L. The case in which the graph G is a rooted directed tree, the number of
processors 1s arbitrary, and all tasks have equal execution times was previously
considered by Hu [3]. Essentially, he showed that by assigning a priority to a
task T" equal to the number of tasks in the longest chain from 7" to any terminal
vertex, if tasks are executed with highest priority tasks attempted first, this
results in a minimal length schedule.

In this paper we allow G to be an arbitrary acyclic directed graph, with all
tasks having equal execution times, although we restrict ourselves to two-
processor systems (possible extensions are discussed at the end of the paper).
This case has also recently been considered by Fujii, Kasami, and Ninomiya
[8, 9]. They showed that an optimal schedule can be constructed from a maximal
matching for the incomparability graph of the given partial order. The best
upper bound currently known [10] for the complexity of a maximal matching
algorithm for a graph on # vertices is of the order of #4, although it appears [11]
that this can be reduced to #3.

It is not difficult to verify that the algorithm we present in the following
section has an order of %2, which, in a certain sense, is best possible since up
to ¢ m? arcs are necessary in general to specify a partial order. It will also be
seen that this model is applicable to those situations in which computations
can be partitioned into equal sized tasks or when preemptions are allowed for
tasks having arbitrary execution times.

II. The Scheduling Algorithm and Proof of its Optimality

We present below an algorithm, to be called Algorithm 4, for constructing
the optimal list L*. First, we need the following definition.

Optimal Scheduling for Two-Processor Systems 203

We linearly order decreasing sequences of positive integers as follows. If
N =(n;, ny, ..., n,) and N’ = (n3, ng, ..., n;,) are decreasing sequences of positive
integers (where possibly ¢ =0) we shall say that N < V' if either

(i)’ for some ¢=1, we have #; :ny'- for all § satisfying 1 <j<7—1 and
n;<<#;, or
(il) ¢<#' and n;=mn, 1 <j=¢.

Let 7 denote the number of tasks in G. Algorithm A assigns to each task T,
an integer a(T)€{1, 2, ..., 7}. The map « is defined recursively as follows.

(a) An arbitrary task T, with S(T,) =@ is chosen and « (1) is defined to be 1.

(b) Suppose for some k=<7, the integers 1, 2, ..., 2—1 have been assigned.
For each task T for which « has been defined on all elements of S(T), let N(T)
denote the decreasing sequence of integers formed by ordering the set {a(7”):
T’e S(T)}. At least one of these tasks T'* must satisfy N(7%*)<N(T) for all
such tasks 7". Choose one such 7* and define o (7*) to be .

(c) We repeat the assignment in (b) until all tasks of G have been assigned
some integer.

Finally, the list L* is defined by Algorithm 4 to be (U,, U,_,, ..., U;) where
a(U) =k 1Sk,

In Fig. 2 we give an example of a graph and a list L* produced by Algorithm 4.
Note that there are many lists satisfying Algorithm A4 since S(Ty) =S(Ty),
S(Ty) =S (Tn) =S (Ty,), S(T,)=S(T,), and S(I;)=S(T,) =0. The schedule
generated by L* is also shown in the figure.

Because of the unit execution times both F and E, become available for
executing tasks at the same times. Suppose that F, and F, become available
for executing new tasks at time ¢, and that 7 is the unexecuted task whose
label is highest of those corresponding to tasks as yet unexecuted at time ¢.
For all 7" such that 77 < T the labeling produced by Algorithm A is such that
a(T") >« (T). Hence, at time ¢ all predecessors of 7 must have been executed
and 7 is ready to be executed. Since by the construction of L*, P, and F, always
attempt to execute the unexecuted task with the highest label, and since B is
assigned tasks before F, by convention, we see that 7" must be the task executed
by B in the unit interval beginning at time f. This establishes the following
property which we put in the form of a lemma for ease of reference in the proof
that L* is optimal.

Lemma 1. Define 7(7) as the nonnegative integer representing the time at
which task T€G begins execution in a schedule corresponding to the list L*
for G. If T is executed by B, and ©(T) <7(T"), T==T1", then a(T) >a(T").

From the above we note also that B is never idle before time w(L*). The
principal result now follows.

Theorem 1. For a given graph G, o (L*) Zw(L) for all lists L.

Proof. We begin with some definitions. Suppose the tasks of G are executed
using L*. If F, is idle from time ¢ to time ¢ 41, we say that I, is executing an
empty task § and we define « (@) =0. We recursively define tasks ¥; and W, as
follows:

204 E. G. Coffman, Jr. and R. L. Graham:

T

N.B. Tasks have been indexed so that the index of a task is equal to the label
assigned by Algorithm 4, i.e., « (T;) =7.

T2 o, B T T, T,

1 1 i I i i !

Tio Ty Tis Tis
i i

R

T L%, p T 5

|]
! I I ¥ I 1 1

Tig , Ts Tis Tis
] T

Fig. 2. Example of Algorithm 4

(i) V5 is defined to be the task executed by B satisfying (V) =w (L*) —1
(i.e., I is the last task to be executed by B). Similarly W, is defined to be the
(possibly empty) task executed by B, with 7(W,) = (L*) —1.

Optimal Scheduling for Two-Processor Systems 205

(i) In general, for 2 =1, W, is defined to be the (possibly empty) task T
for which o«(T) <a«(V,_,), t(T)<t({V,—,) and ©(7T) is maximal. It follows from
Lemma 1 that W, must be executed by F,. V, is defined to be the task executed
by B satisfying 7 (V,) =7 ().

If W does not exist then no processor is idle before time w(L*) —1 and L*
is clearly optimal. Hence, we may assume that W;. (and therefore V}) exists.
Suppose that we are only able to define W, for 0 =7 < m. Define & to be the set
of tasks T satisfying 1(V,.,) <7(T)=7(V;) but with T=+W,, 0=/ =<m. Since
V,,., does not exist then %,, is the set of tasks T with ©(T) <t (V,,) and T +W,,.

Note that the cardinality of each y, is odd and we can set |%,|=2n,—1
for a positive integer #,, 0 <% <m. An example illustrating the above definitions
is provided by the Gantt chart for Fig. 2. This chart is reproduced in Fig. 3 where
boxes have been drawn to isolate the sets &.

ol Bo T [T T (o T || B BT B
ll 1 | | I] 1 1 | } 1
X3 X2 X1 Xo
1_)2| 7118| 7‘6 1 715 1 Ti3 1 711 L T:t, Ts, ﬂ'] T3| Ti]
I i 1 i 1 I i 1 i 1 1

Note that task indices are chosen to correspond to labels, i.e., (T}) =7

Fig. 3. Example for definition of Z;

The heart of the proof of the theorem is.contained in the fact that for0 <2 = m,
if TeX,, T'€ %, then T < T. We proceed to prove this by double induction
on 7(7T) and 7(T’). By the definition of &,, T€%, implies «(T)=«(¥;) and
(T) =t(W).

First, let X€ %), with 7(X) minimal, i.e., 7(X) =14y +1 =7 V3) —n, +1.
Since

& (Varn) > (X) Za(Vy) > o (W)

then X was called by P, to be executed at time 7 (¥,,,) but it was not executed.
Hence, at that time some predecessor X’ of X must not have been executed.
Thus, ©(X')=1(V,,,). But this implies «(X’)>a(X) by the definition of
Algorithm 4. Since X was executed at time 7(X), X’ must be executed before
X and

T(X) =7(X) —1=7(V1).

Therefore t(X') =1(V,4,) and «(X')>a(W,). There is only one possibility
for X’, namely, X’ =V, ,. Thus, we have ¥, , <X.

14 Acta Informatica, Vol. 1

206 E. G. Coffman, Jr. and R. L. Graham:

Next, suppose for a fixed j, 1 <j<n,, we have shown that Xe€ &, » and
T(X) =t(V) —m +7 imply ¥, < X. Let X'e &, with v(X") =7 (V;) —n, +75 +1.
Since

% (Vera) >a(X) 2o (V) >a (W)

then, as before, X’ was called by F, at time 7(¥,_,) to be executed but it was not
ready to be executed. Thus, some predecessor X’* of X’ had not been executed
by this time and we must have 7(X"') 2t (V,,,) =7 (V;) —n,. Also, since X" < X"
then 7(X") <v(X') =1 =1(V;) —m, +7. If 7(X"") =1 (V}) —n, then since (X)) >
a(X') Zza(V;) >a(W,,,), we must have X" =V,,, and we obtain V, ;< X’ as
required. Hence, we may assume ©(X")=v()}) —#,+1. By the induction
hypothesis, since
V) —m+1=v(X") St (V) —m +7

we see that X"'€Z, and V,,; < X"'. Therefore, by the transitivity of the partial
order < we obtain V,,; <X’ and the first induction step is completed. This
shows that

Viia<X forall XeZ,.

Let I, denote the set of tasks in %, which have no predecessor in &, »- Since
Vir1<X for all Xe Z;, then it is not difficult to see that S(V;.,) %, =I,.

Suppose now for some j, 0<j<#,,, —2, we have shown that if T¢ Zoiy
with 1(V,,,) —f =7(T) £7v(Vyy,) then T< X for all XeZ%,. Let X'eX, ., with
(X)) =1(Vyy1) —7—1. Since X'€ %, then a(X’)>a(V,,,). Thus, we must
have N(X')=N(V,,,) where we recall that N(X’) is formed by taking the
decreasing sequence of a-values of the immediate successors of X’. If there
exists X"'€ S(X’) N %, then by the induction hypothesis, since (X" >r(X) =
TV —71—1, ie, (X")21(V,41) —7, then X’ <X for all Xe%,, and by
transitivity, X' <X for all Xe%,. Thus, we can assume that S(XYnZy,, is
empty. By Lemma 1, o(T) <a(¥;) if v(T)>t(V;). Also, we see a (W) <a (V).
A moment’s reflection now shows that from the definition of Algorithm 4, if
N(X') 2 N(V,,) and X" has nosuccessor in £} , , then wemust have S (X)NnZ,=1,.
This in turn implies X’ < X for all X€%,. This completes the induction step and
the proof that if 7€ %), and T'€ Z;,,, 0<k=<m, then T' < T.

It is now a short step to a proof of the theorem. For an arbitrary list L, all
the tasks in £, must still be executed before any task in %, can be started.
Since %, consists of 2#,,, —1 tasks then this will require at least 7, units

”

of time. Thus, to execute G will require at least > n;, units of time, no matter
L4 k=0

what list L is used. Since w(L*) = 3}, we have shown w(L)=Zw(L*) and the

proof is complete. k=0

I1I. Remarks on the Generality of Algorithm 4

At this stage one is naturally led to consider possible extensions of the
preceding results. For example, one might consider the problem of algorithms
for optimal lists in the case of 3 (or more) processors. The simple example in
Fig. 4 shows that Algorithm A4 no longer always yields optimal lists.

Optimal Scheduling for Two-Processor Systems 207

(]10 Ull (]12

U U Uy U, Uy Us

Fig. 4

One possible labeling resulting from the application of Algorithm 4 is « (U,) =&,
1=<k=12. If G is executed using the corresponding L* =(U,,, U, ..., U;) we
find that w(L*) =5 where, in fact, the list L =(U,,, Uy, Uy, Uy, Uy, Uy, ..., U)
yields w (L) =4.

Similarly, one might use only 2 processors but allow the tasks to have
different execution times. However, the example in Fig. 5 shows that even if
we allow execution times to be either one or two units in length, then Algorithm A4
can fail to be optimal.

T;: 1 T,:1 T;:2

Execution times
shown with tasks

T,: 1 Ts: 1

A best schedule according to Algorithm A:

T; T. T.
B
. 0 o(l¥)=4
T, T,
B, ——t—+—
An optimal schedule:
T T,
R ——t—
w(L)=3
L, L, T
1 T I

14°

208 E. G. Coffman, Jr: and R. L. Graham:

We remark that Algorithm 4 might be termed a “local” algorithm in the
sense that it recursively labels a task 7 of G just according to the labels of the
immediate successors of T. It would be interesting to know if local algorithms
for optimal lists exist for the extensions mentioned.

IV. Application to Preemptive Scheduling

Apart from its theoretical significance Algorithm A4 of the preceding section
has its principal application in the design of preemptive scheduling algorithms.
To illustrate this application suppose we have an arbitrary computation graph G,
whose tasks T}, ..., T, have execution times y,, ..., g,, respectively. We assume
that the us are arbitrary subject to the constraint that they be mutually
commensurable *, i.e., there exists a real number w such that each task execution
time can be expressed as an integral multiple of w. (Hereafter, w will be taken
as the largest such number.) ;

In terms of w we can define a graph G,, which is obtained from G by replacing
each task T, by a chain of #n; subtasks T}, ..., T;,, having execution times of
w time units where p;=n;w. For example, in Fig. 6a we choose w=1 and
obtain the graph G, in Fig. 6b. Assuming that we have a system in which pre-
emptions are allowed only at times w, 2w, 3w, ..., an optimal nonpreemptive
schedule for G, (as obtained by Algorithm A4) can be viewed as an optimal
preemptive schedule for G. In Fig. 6 we have also indicated the schedules for G
and G, which show the improvement by a factor of 7/6 made possible by allowing
preemptions at the end of each unit interval.

The question naturally arises as to whether an even finer subdivision of the
tasks would lead to even shorter preemptive schedules; that is, is it beneficial
to be able to preempt at more frequent intervals. In general, the answer is yes
although we need not consider preemptions at intervals more frequent than one
every w/2 time units for two processors. More precisely, it is known [4] that any
preemptive schedule (preemption times completely unconstrained) for a graph G
is at least as long as the optimal nonpreemptive schedule for G,,. In Fig. 7 we
have shown G,,, for the graph in Fig. 6a. As shown in the figure the optimal
nonpreemptive schedule for G, (and: therefore the optimal preemptive schedule
for G) improves over G, and represents an improvement over the schedule for G
by a factor of 14/11.

For a given graph G let wy and wp denote the lengths of the optimal non-
preemptive and preemptive schedules, respectively. For an arbitrary number,
m =1, of processors it is known [5] that an upper bound for wy/wp is given by

By modifying an example used for illustrating multiprocessing anomalies [6]
we can show that the above bound is best possible. The example is shown in

* Of course, any set of u;’s can be approximated arbitrarily closely by mutually
commensurable ones.

Optimal Scheduling for Two-Processor Systems 209

Tiy:1 T5:1 T30 1
?

Y

®
Tse:1 Te1: 1 T 1
G G,
(a) (b)
For G
I 1; , T, T
R I % I ——
0 2 4 6
P T2] p P L P,
2 1 1 1 1 I
For G,:
P ’Tll 1 ’TSI t 7122 i T41 1 7;1] T71 |
1 T | 1 T T T

Ty, T2 Toy P Ta , O,
T

P2 ! | i 1 |

Fig. 6. Illustrating G,,

Fig. 8 along with optimal schedules. As can be verified from the figure

wy 2m—1+4¢

wp m-te

so that for ¢ sufficiently small, the ratio approaches 2 —1/m.

When the graphs G,,, are large a more efficient procedure for obtaining the
best preemptive schedules for two processors can be given. To present this
procedure and to see its relation to Algorithm A it is convenient to introduce
so-called processor-sharing disciplines. For these disciplines the m processors
are considered to comprise a certain total amount of computing capability
rather than being discrete units. It is assumed that this computing capability

210 E. G. Coffman, Jr. and R. L. Graham:

Tie I, I;,9
\

T, [I, T:szV

TlBI U T331
Y Y Y

Un Ty, ¢ I,

All subtasks have 1 time unit
execution time

Nonpreemptive schedule for Gy:

Ty T3 1 Tz | Ty | Tis
1

1 7124 L T4l
1 I 1 1 [i I I |

I | L T Ty | T

l
|

o 4+ 1 13 2 2% 3 3% 4 4 5 5

Ty Ty Ty Ty, Ty Ty, 0, 0 T Ty Ty
1 T j f j 1 T T 1 1 l

Fig. 7. An optimal preemptive schedule

can be assigned to tasks in any amount between 0 and the equivalent of one
processor; as before a task can never be executed at a rate that exceeds that
achievable on a single processor. If we assign an amount §, 0 <8 <1 of computing
capability to a task then we assume that the execution time of the task is increased
by a factor of 1/8. For example, if f#=1/2 for a task T with execution time u
then T will take 24 units of time to complete if it continues to be executed at
this rate.

It is easily shown [4] (and illustrated below) that any schedule involving
processor-sharing can be replaced by a preemptive schedule of precisely the same
length. However, an optimal preemptive scheduling algorithm for two processors
is most easily expressed indirectly in terms of processor-sharing. Before giving
this algorithm we need the following definition.

Ift7;,1,, Ty, ..., Ty, T; is a path from T, to T; then the length of this path

)

is defined to be u, + X u; +p;. The level of a task T is defined to be the length
=1

Optimal Scheduling for Two-Processor Systems 211
T :¢ T,:¢ T, ¢ T,: 2¢
L °
T2m+1:m_1 T2m~4~2:m""1 T2m+3:m—1 T;)m:m_l
An Optimal Nonpreemptive Schedule
71 | T2m+2 1 sz | T2m+1]
1 1 1 T
7"2] Tlm+3 i ¢] ﬂ 1
7] 1
£ m—14¢ m+e 2m—1+¢
Tm—1| T3m t ﬂ [p §
i T J 1
Tm 1 7:"-!-1 1 Tm+2 1 “en 1 T‘Zm--l f p lr ﬂ :
T {
2¢ 2e+1 2e+2 -+ 2g+m-—2

An Optimal Preemptive Schedule

Tl T2m+2| Tm+1 1 T2m+1 1
& 2 2¢+1 m+2e

T, T2m+3| T;n+2 { T2m+2 1 ﬂ i

| I i 1 1

...... mp=m+8

Tm-—lI T3m 1 713»!—-1 1 T3m-—-1 1 ﬂ i

] 1 1] 1

T { TZm 1 T3m | ﬂ l

1 I 1 1

2¢ 2e+1 m+¢e

Fig. 8. Preemptive vs. nonpreemptive schedules

212 E. G. Coffman, Jr. and R. L. Graham:
of a longest path from T; to a terminal task. Now consider the following scheduling
algorithm for an arbitrary graph G and m processors.

Algorithm B. Assign one processor each to the tasks at the highest level. If
there is a tie among b tasks (because they are at the same level) for the last a (a<b)
processors then assign a/b of a processor to each of these b tasks. Whenever either
of the two events described below occurs, we reassign the processors to the
unexecuted portion of the graph G according to the above rule. These are

Event 1. A task is completed.

Event 2. We reach a point where, if we were to continue the present assignment
we would be executing some tasks at a lower level at a faster rate than other
tasks at a higher level.

An example is shown in Fig. 9 along with the equivalent preemptive schedule.
From the figure we can make the following observations. First, at £ =1 we have
an occurrence of Event 2 (this is the only such occurrence). Second, a conversion

T;:2 T,:2

T;:1 T,:2

Ts:1 Te:l Toil Ty Ty: 1
Schedule Produced by Algorithm B

L0 1 2 3 4 s 6 7
l | ! | |
=z V777
LT p=} L B=% VS,
p=1 p=1| Ts B=% v /
T, p=} L p=t |/ ///
T; AV
2 L T, p=% ////
B=1|T. B=3|B=1"T 53 ’ Ly
9 5 VA,
| |
[| I
| I |
| I l
///
R|G| GBI G| |T|nf/ /)
//////
B|B|G % |n|s\ % | s/ /)

Optimal Preemptive Schedule

Fig. 9. Optimal preemptive schedules

Optimal Scheduling for Two-Processor Systems 213

from processor-sharing to a preemptive schedule can be performed individually
for each assignment interval over which the processor assignments do not change.
Finally, as expected it is never necessary to preempt more frequently than once
every w/2 =1/2 time unit in the resulting preemptive schedule.

Informally, Algorithm B might be termed a generalized ‘““critical path”
algorithm. Tasks are given priority based on their distance from terminal tasks.
When there are several tasks with the same priority competing for a smaller
number of processors, the processors work on all the tasks at a reduced rate
which is the same for each task. For m =2 Algorithm B defines an optimal
preemptive schedule for G. (The algorithm is also optimal for arbitrary m if G
is a rooted tree structure.) This is proved elsewhere [4], but the result is easily
motiviated by considering the nature of Algorithm 4.

First, we observe that Algorithm A at each decision point always sequences
the highest-level available tasks first. This follows from the fact that if the
task T, has a higher level than task 7; (we are assuming that all tasks have equal
execution times), then «(T}) >« (T}). (A simple induction argument suffices to
establish this property of the labeling procedure.) Now consider the sequencing
produced by Algorithm A for the graph G, as #—>oco. Since a given task in G
can only retain its scheduling priority over a time interval w/n we note that the
ordering of task labels produced by the labeling algorithm at a given level has
less importance as w/n becomes small. Thus, because of the highest-level-first
property it is apparent that in the limit Algorithm 4 converges to Algorithm B.
This gives intuitive support to the fact that the limiting behavior of Algorithm A4
applied to G,, does produce an optimal processor-sharing schedule.

References

4. Fulkerson, D. R.: Scheduling in project networks. Proc. IBM Scientific Computing
Symposium on Combinatorial Problems. New York: IBM Corporation 1966.

2. Clark, W.: The Gantt chart (3rd Edition). London: Pitman and Sons 1952.

3. Hu, T. C.: Parallel sequencing and assembly line problems. Operations Research
9, No. 6 (Nov. 1961).

4. Muntz, R. R., Coffman, E. G., Jr.: Optimal preemptive scheduling on two-
processor systems. IEEE Trans. on Computers C 18, No. 11, 1014-1020, Nov. 1969.

5. — Scheduling of computations on multiprocessor systems: The preemptive
assignment discipline. PhD. Thesis, Electrical Eng. Dept., Princeton University,
April 1969.

6. Graham, R. L.: Bounds for certain multiprocessing anomalies. BST J, Nov. 1966,
PP. 1563-1581.

7. — Bounds on multiprocessing timing anomalies. SIAM J. Appl Math. 17,
No. 2; 416-429 (1969).

8. Fujii, M., Kasami, T., Ninomiya, K.: Optimal sequence of two equivalent
processors. SIAM J. Appl. Math. 17, No. 3, 784-789 (1969).

9. — Erratum. SIAM J. Appl. Math. 20, No. 1, 141 (1971).

10. Edmonds, J.: Paths, trees and flowers. Canad. J. Math. 17, 449-467 (1965).

11. Lawler, E. L. (personal communication).

Ass. Prof. E. G. Coffman, Jr. Dr. R. L. Graham

Computer Science Department Bell Telephone Laboratories, Inc.
Pennsylvania State University Murray Hill

University Park, Penn. 16802 New Jersey

U.S.A. U.SA.

