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Abstract. The complement of the transitive closure of the complement of a transitive relation is
transitive. We prove this fact in three ways, analyze the underlying structure and consider
various refinements and applications.

§1. Preliminary remarks

The purpose of this note is to explore the interaction between two
fundamental operations on binary relations. If R is a relation on a set 4,
the complement R~ is defined to be (4 X A) — R, and the transitive hull
or transitive closure R™ is defined to be the smallest transitive relation
containing R. When (a, b) € R we write aRb. The composition R » S of
two relations R and S is defined to be {(g, ¢)|aRb and bSc for some b}.
It is well known that R* = RUR°RUR°R°R U ... = {(a, b)| there exist
ag, ay, -, a, for some n > 1 such thata =a,, a;_ Ra; for 1 < i< n,and
a, = b}.

If RC S it is obvious that R~ 2§~ and R* € S*. In particular we
always have

(D R™*"CR,
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since R~ € R~ . Another immediate consequence of the definitions is
(2) R* ~RCRsR"=R*'°R.

By putting these facts together we can derive a less obvious property:

Lemma 1. R* e R*~*- C R*—*—,

Proof. The stated relation is false if and only if there exist a, b, ¢ such
that aR*b, bBR* "¢, and aR* ~*c. By (1), bR*¢; hence aR*c, i.c.

(@, cye R*~%* — R*~. By (2), there exists an element d such that aR*~d
and dR™*c. But now if bR*d, we have aR*d, contradicting aR*~d; and
if bBR*~d, we have bR* ~*¢, contradicting bBR**~¢.

Theorem 1. If R is any binary relation, R*=*~* = R*~*~_ Therefore at
most 10 relations can be generated from R by taking complements and
transitive closures, namely

R R+ R+~ R+—+ R+—-+—
(3)
Rv,R—+,R~+—,R——+-—+, R—+—+~‘

Proof. By the lemma and (1), R* """ e R*=*= C R*e R*~*- Cc R*~*-,
i.e., R* 7"~ is transitive. The 10 relations in (3) are now the only possi-
bilities, sincce R~~ =R and R** = R*..

Theorem 1 is analogous to the well-known “‘Kuratowski closure and
complement problem™ [4, 6]; Kuratowski proved in his Ph. D. disserta-
tion that a subset of a topological space generates at most 14 sets under
the operations of complementation and (topological) closure.

The following relation on five elements generates all 10 of the distinct
possibilities in Theorem 1, hence the result is ““best possible”:

(4a)

00011 00111 11000 11000 00111
01011 Or111 10000 11000 00111
R =00011,R" =00111,R™™ =11000,R™™ =11000,R™*" =00111,
00001 00111 11000 11000 00111

00110 00111 11000 11000 00111
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(4b)
11100 11100 00011 00011 11100
10100 11100 00011 00011 11100
R™=11100.R" "= 11100, R~" = 00011, R"*"=00011,R~* " =11100,
11110 11110 00001 00011 11100
11001 11101 00010 00011 11100

We shall see below that this is the “simplest™ relation R which generates
all 10 possibilities. The first example of such a relation on five elements
was found by Garey [2]. Note that the operation of transposition (often
called the converse or inverse relation) commutes with complementation
and transitive closure; hence at most 20 relations can be generated from
a given one under the operations of complementation, closure and in-
verse. The example in (4), together with the transposes of each matrix,
shows that 20 is best possible.

§ 2. The underlying structure

Let us now look at the 10 relations in (3) more closely, so that we
can understand what they represent.

If R is not connected, so that RC B X BU(A—B) X (A—B) with B
and A—B nonempty, the situation is degenerate. For in this case
R 2BX(A-BYU(A-B)X B,andR"" =4 X A; R " is empty.
Similarly R* "% = 4 X A, so (3) contains at most 6 different relations.
(In fact there are exactly 6 if and only if R is not transitive, when R is
not connected.) Therefore the only interesting cases arise when R and
R™ are connected.

In general, we can define two important equivalence relations based
on a given relation R. Let us write

a <> b(R)

ifa=b, oraR*b and bR*a. This relation is obviously reflexive, sym-
metric and transitive, so it partitions A into equivalence classes: in fact,
regarding R as a directed graph with an arc from a to b if and only if
aRb, these classes are precisely the strong components.

Another, somewhat coarser, equivalence

a+<= b(R)
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is defined to mean that either ¢ <= b(R) or a <> b(R*™). Since a <> h(R)
and b <> ¢(R*7) imply a <> ¢(R*7), it is not difficult to verify that =
is an equivalence relation; let us call the associated classes the weak com-
ponents.

Note that aR*~b and bR* "¢ and aR™¢ implies bR*~a and ¢cR* " b.

Hence any minimum-length chain a = ayR*~a;R*~...R*~a, = b of R*~
relations between two elements @ and b will also be a chain
b=a,R*"..R""a;R""ay = q in the opposite direction, whenever n > 2.
This makes it easy to prove a slightly ‘“‘stronger” property of the weak
components:

Lemma 2. Let RM pe the symmetric relation {(a, b)|aR™ b and bR* " a}.
Then a <= b(R) if and only if either a <> b(R) or aRM*b.

The importance of the equivalence relations <~ and < is due to the

fact that R* defines a partial order on the strong components, and a
total order on the weak components. Indeed, the strong components
constitute the finest partition of 4 which is partially ordered by R*, and
the weak components constitute the finest partition which is totally
ordered by R™. In order to see this, let 7 be any partition which is totally
ordered by R", and suppose that @ and b are elements of different blocks
of 7 although a <> b(R). We may assume that aR* b and bR* " a; hence
by Lemma 2 we must have aR™* b. But this implies that ¢ and b must
belong to the same partition of 7, contradicting our assumption. In
other words, each block of # must be a union of weak components.

The total ordering property allows us to write

a< b(R)

ifa <% b(R) and aR™b. Every weak component is made up of one or
more strong components; we shall call a weak component simple if it
consists of just one strong component, and we shall call a component
trivial if it consists of a single element.

These definitions are illustrated in fig. 1, where a relation R on 15
points is shown as a directed graph. The 9 strong components are en-
closed in dotted lines, and the 4 weak components are separated by
straight horizontal lines. Only one of the weak components is simple
and they are all nontrivial; 5 of the strong components are trivial.

We have defined the strong and weak components in such a way that
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)
)

Fig. 1. Strong and weak components of a relation.

A

they are unchanged when R is replaced by R*. Let us now observe what
happens when R is replaced by the relation R*~: All arcs within non-
trivial strong components disappear, and there are paths between any
two strong R-components of a single weak R-component. If a < b(R),
we have bR*~a by definition, hence all points belonging to different
weak components are joined in the graph for R*~ by an arc from the
larger element to the smaller. It follows that elements of different weak
R-components belong to different weak R* ~-components. Conversely,
if @ and b belong to the same weak R-component, and if this component
is simple and nontrivial, then a and » must be unrelated in R*~*; on the
other hand if this component is not simple it is easy to see that
a<> bR ).

These observations allow us to characterise R* ~* completely:

Theorem 2. For a + b, aR*~*b if and only if a and b are in the same
nonsimple weak R-component or b < a(R). Also, aR*~*a if and only if
a is in a nonsimple weak R-component, or a is in a trivial weak R-compo-
nent and aR ™" a.

Hence, fora # b, aR*~*~b if and only if @ and b both belong to the
same simple weak R-component ora < b(R). Also, aR*~*~a if and only
if @ is in a simple nontrivial weak R-component, or g is in a trivial weak
R-component and aRa. This relation is clearly transitive, so we have
found the structure underlying Theorem 1.
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§ 3. Free relations

Most relations R seem to generate a complete set of fewer than 10
relations; at least, the authors spent six or seven frustrating hours before
finding a single example such as (4), since we had not yet discovered
Theorem 2. Let us now determine the structure of “‘free relations” which
generate all 10 distinct possibilities.

So far we have seen connections between R and R* ™ ; there is also an
interesting relation between the componénts of Rand R~

Lemma 3. Every nonsimple weak R-component is contained in some
simple weak R~ -component.

Proof. Let ¢ and b belong to the same nonsimple weak R-component
witha # b. If a <+ b(R), we have ¢ < b(RY ), i.e., aRY ~*b and
PR*"*a. But R*""*C R *sothataR "hand bR "a,ie.,a < b(R").
If a <= b(R) there is an element ¢ in the same weak R-component but
not in the same strong R-component (since the weak component is non-
simple) and again a <= b(R7) since a <> c(R")and b < ¢(R™). Hence
a and b belong to the same strong R~ -componeit.

It the weak R™-component containing ¢ and b were not simple, we
could use the same argument to show that it is contained in a simple
weak R-component, since R~ = R; but that would be absurd.

Let us say that a weak R-component W contains an arc if there exist
elements a, b € W such that aRb.
Consider the following four conditions on a relation K:
(I). R has a nonsimple weak component containing an arc.
(I1). R~ has a nonsimple weak component containing an arc.
(I11). Some simple nontrivial weak R-component intersects some
simple nontrivial weak R~ -component.
(I11'). The weak R-components are not the same as the weak R~ -com-
ponents.

Theorem 3. A relation R is free if and only if R satisfies (1), (11) and
(111), or (1), (11) and.(111').

Proof. (=). In order for R to be free we must certainly have
()R*~# R,
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()R T~ #R * 7,

G R~ "+ R,

Let us examine these in detail.

Since aR*~b is equivalent to aR*~*h whenever a and b lie in different
weak R-components, or if @ and b lie in the same strong R-component
of a simple weak R-component, condition (i) can hold only if there is a
nonsimple weak R-component. Theorem 2 tells us that aR* ™ * 5 holds
for all @ and b within such a component. Thus condition (i) is equivalent
to the existence of a nonsimple weak R-component containing elements
a, b such that aR* b, and this is equivalent to (I).

Of course, (ii) is just (i) with R replaced by R~ . Hence, (ii) holds if
and only if (II) holds.

Suppose (iii) holds. Since R~F " C R*~*~* = R*=*~ we must have

(%) aR*™""b and aR*~*"b forsome g and b .

If a # b, then by Theorem 2 we have: ¢ and b are in the same simple
weak R-component or a < b(R), and ¢ and b are in the same simple
weak R™-component ora < b(R7). If a = b, then by Theorem 2 we
have: a is in a simple nontrivial weak R-component or ¢ is in a trivial
weak R-component and aRa, and ¢ is in a simple nontrivial weak R~ -
component or ¢ is in a trivial weak R™-component and aR " a.

Since we cannot have both g < h(R) and a < b(R ™), property (5)
holds if and only if at least one of the following is true:

(1). There exists a simple weak R-component not contained in a

weak R~ -component.

(2). There exists a simple weak R~ -component not contained in a

weak R-component.

(3). Some simple nontrivial weak R-component intersects some

simple nontrivial weak R~ -component.

(4). There exists an element ¢ in a trivial weak R-component and a

simple nontrivial weak R~ -component, with aRa.

(5). There exists an element ¢ in a trivial weak R™-component and a

simple nontrivial weak R-component, with aR ™ a.

Note that by Lemma 3, we may delete the word *‘simple” in the first
two of these conditions. These first two conditions are then exactly
equivalent to (III'). Moreover, if they fail to hold, then so do the final
two conditions listed. We are left with the third condition which is, of
course, identical to (III).
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In summary, we have now shown that (i) < (I), (ii) < (II) and
(iii) <= (III) or (II1"), and the necessity of the conditions has been
established.

(<). Assume that (I), (I) and either (I1II) or (III') hold. To show that
R is free, we must prove that all 10 expressions R, R*, R, R*~ 1,
R* ™" R™,R™™,R™*—,R~*~* R~"~"~ are distinct. Table 1 indicates
the various reasons behind the 45 necessary inequalities.

Table 1
Summary of 45 cases

¢
+ |(111)
et * * (1)
+—te | (T) [ (D) ] *
- * * IIn| (1) *
-+ |+ [ (T) (1) {(11D) | (I) |(11T)
-~ [(TIT)|(zII)| (D) | (3) |(zzD)| = *
-+ | (z1) {(xzT) | (FT) | (D) |(zzm)| = * [ (I1)
- * (T | (r1n) |(zTT) | (3) | (z1) | (Z1) | * *
QS + +- +=t =t - -+ -t = -t —+—t-

An entry of (1), (1I) or (III) indicates that condition (1), (IT) or (II1)
(or (11I)) is used in establishing the corresponding inequality. For
example, the (0,+—+—) entry is (I), where, of course, @ denotes R itself.
IfR=R""*, then

R+-— = (R+—+—)+— - (R+-»+—+)—
=((R*"*7) by Theorem 1

— pt—+
=R s
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which contradicts (I).

An entry of * denotes that the corresponding inequality follows from
the fact that A is nonempty so that no relation equals its complement,
For example, the (+,+—+) entry is *. f R* = R*~™ then

RY* ™~ =(R*~*)y"*~ =(R*~*~*)" =(R*~*~)~ by Theorem 1

=Rt ;
which contradicts the nonemptiness of 4.

The entries (1), (II) indicate that the argument needed uses more than
Theorem 1. For example, the (+—+, —+—+) entry is (I). By (I), R has a
nonsimple weak component. Let ¢ and b belong to this component with
a # b. By Lemma 3, ¢ and b are in a simple R~ -component. By Theorem
2,aR* " *b,aR™* " *"b,ie.R*TT £ R,

The (—+,+) entry is also (1), since R™* = R* implies R~*~* = R+,
and the latter is impossible as we have just seen. The reader should have
little difficulty in verifying the remaining entries, thus completing the
proof of the theorem.

With this result, we may now justify the claim made earlier for (4).

Theorem 4. A relation on less than 5 elements always generates less than
10 relations under complementation and transitive closure.

Proef. Suppose R is free and A has < 4 elements. By Theorem 3, (I) and
(II) imply that R and R~ must each have a nonsimple weak component.
By Lemma 3, these components must be disjoint. Hence A must have 4
elements. It is easily seen, though, that in this case (I111) and (III') must
both fail, contradicting the freeness of R.

It can be shown, in fact, that all free relations on 5 elements must
have at least 10 ordered pairs. Thus (4) is minimal in a strong sense.

§ 4. Extensions and applications

Suppose R C T, where T is a total order relation. T may be reflexive,
irreflexive, or partly reflexive; the “diagonal” elements are immaterial
in the following discussion. We can consider complements with respect
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to T instead of A X A4; thus, let R® = T — R. For this case, the analog of
Lemma 1 does not hold:

0011 0111 0000 0001
_ ., 0000 _ 0011 +a+a _ 0000 4y prata _ 0000
R=R"=0001> T 0001 R ooo1° K R 0000 °

0000 0000 0000 0000

On the other hand, the analog of Theorem 1 is true:
Theorem 5. In terms of the above notation, R*A*A% = R1A™A

Proof. Assume that R*4*2 is not transitive. There must be elements
a, b, ¢ such that aR***4p, bR***2¢ and aR***¢ (since aTc). Hence for
some n > 1 we have elements ag, ay, ..., a, such that a = a,, apR**a;,
a\R™ay,...,a,_ R™a,,a, =c. ‘

If b = a; for some j, we would have aR™"b, a contradiction; hence the
fact that 7 is a total order implies that there is some j such that a; ;Th
and b7a;. Now a;_;R"b (since g;_;R**b would imply that aR***b) and
similarly bR+a].; hence ¢;_ R*a;, a contradiction.

The proof of this theorem makes essential use of the hypothesis that
T is a total order. If T were merely assumed to be a partial order con-
taining R, we could not prove Theorem 5, because of the following
simple counterexample:

0010 0111
0000 0001 rarn _ .
R=0001> T%0001> R R#R".
0000 0000

Another common operation of interest is the reflexive closure
R! = R U I where I is the equality relation. It is not difficult to prove
that RF'= R~7and R*T-* = R~1-*. A somewhat less evident identity
is R*~*—*— = R~I=*-*. the reader will find it instructive to prove this.
By using identities such as these, it is possible to establish the analog of
Theorem 1 for the three operations ¥, ~ and /. We state this without
proof.
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Theorem 1'. At most 42 relations can be generated from a relation R by
taking complements, transitive closures and reflexive closures. These are
indicated in fig. 2.

J

N ]
N N

+-T +T- —+ —I -I- I+

+ -t
/N RN
+ot e ++T  +-T- +TI-+ -+t -+-1 ~+T- I+ T-t-
| I N R
Fot =T +—+T= +T -t = et ~+ 4T —+T- —+T—t oy Tt =+
+-+-T- —+-+-T -t -+~ Tt = [y P T bt~
P Tt —t-

Fig. 2. Independent relations using * ~and 7,
The following relation R generates 42 distinct relations under * ~and’:

000011101
00101110t
000011101
goo11110t1
R =000111101
000101101
000111101
111111111
000000000

M.R. Garey [2] has recently considered the operation of “transitive
reduction”, the smallest relation whose transitive closure is the same as
R". He has shown that any finite relation leads to at most 34 different
relations under repeated application of complementation, transitive
reduction and transitive closure, and that this bound actually can be
attained.

It is possible to consider other operations on relations and ask similar
questions, e.g., the difunctional closure R? = (R° RT)" * R, where RT is



28 R.L. Graham et al., Complements and transitive closures

the converse of R (cf. [5], [7]), but this will not be done here.

The original application which led to the above theorems was the
following: Let R be a transitive relation; find the largest transitive rela-
tion contained in R whose complement with respect to A X A is transi-
tive. By Theorem 1, the answer is simply R~"~. Or, let R be an irre-
flexive partial ordering contained in the irreflexive total ordering T;
find the largest partial ordering contained in R whose complement with
respect to T is a partial ordering. By Theorem 4, the answer is RAYA,

The latter result applies also to permutations: If p;p, ... p, is a per-
mutation of {1, 2, ...,n}, an inversion is a pair of indices (i, j) such that
i<jandp;> p;. Write iVj if (i, j) is an inversion; then V is transitive,
and so is its complement V2 with respect to T = {(i, j) | i < j}. Conversely
it is not difficult to show ([ 1] pp. 114—117) that there is a unique per-
mutation p,p,...p, whose inversions correspond in this way to a relation
V C T, whenever V and V2 are transitive. If R is a transitive subset of T,
the relation ¥V = RA*2 is the largest subset of R which corresponds to a
permutation. The corresponding permutation therefore has the maximum
number of inversions, among all permutations whose inversions are con-
tained in R.

If we call a relation closed when it is transitive, and open when its
complement is transitive, then the closure R™ is the smallest closed rela-
tion containing R and the “‘interior” R~ 7~ is the largest open relation
contained in R. In these terms, Theorem 1 asserts that the interior of
the closure is closed; dually, the closure of the interior is open.

A result somewhat similar to Theorem 5 has been proved by Guilbaud
and Rosenstiehl [3], who discovered that (R U S)** is transitive when-
ever R*® and S™ are both transitive. The same result holds for ~ in
place of #. We have been unable to find any other work closely related
to the above theorems, in spite of the fact that the operation of transi-
tive closure has been known and applied for so many years. For example,
E. Schréder failed to discover any of the theorems of this paper in his
“exhaustive” study of identities involving binary relations [8]; he would
have dearly loved to know that, in his notation, ayo:(@g0)11 ¥ (@gg)y; and
((@g)11)00 = (@god1r!
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