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I. INTRODUCTION AND Basic TERMINOLOGY

In this paper we present a Ramsey theorem for certain categories
which is sufficiently general to include as special cases the finite vector
space analog to Ramsey’s theorem (conjectured by Gian-Carlo Rota),
the Ramsey theorem for n-parameter sets [2], as well as Ramsey’s
theorem itself [4, 6]. The Ramsey theorem for finite affine spaces is
obtained here simultaneously with that for vector spaces. That these two
are equivalent was already known [5, 1], and the arguments previously
used to show that the affine theorem implies the projective theorem
are also special cases of the results of this paper.

The argument used here to establish the main result is essentially the
same as that used for #-parameter sets [2]. What we do here is to abstract
the properties of n-parameter sets which suffice to allow the induction
argument. In particular, the properties described for n-parameter sets
in Remarks 1-3 of [2] are essential.

In order to state the Ramsey property for a category C we must have
a notion of rank with which to index the objects and subobjects of the
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category. To this end, it is convenient to consider henceforth only
categories C with the following property:

(a) The objects of C are the nonnegative integers 0,1,2,.., and
if | >k, C(I, k) = @, where C(l, k) is the set of all morphisms from /
to kin C.

Using this property, we define a rank on subobjects of an object lin C.
Namely, if kK —/ [ and k' —/" [ are representatives of the same subobject
of 1, then there must be isomorphisms k£ —* k" and ¥’ —* k. But by (a),
this means that & = &’. We define the rank of this subobject to be &, and
we refer to it as a k-subobject of 1. We denote by C[;] the class of sub-
objects of / in C of rank k. We make the convention that for & < 0,
or [ < 0, C[}] = @. In order to make our induction argument work,
we need a finiteness condition. We assume in addition to (a) that all
categories considered here satisfy:

(b) For each pair of integers there is an integer y;; such that C[}]
is a finite set with y, ; elements. In particular, y,, = 1.

For convenience, all categories we consider are assumed to satisfy
(c) All morphisms of C are monomorphisms.

If k —' 1 is a morphism of C, we let f denote the induced mapping
on subjects of L That is, if s —7 k represents a subobject of k, then f
takes this subobject into the subobject of / represented by the composition
fo. This is clearly well defined, and f : C[¥] — C[{]. An r-coloring of C[i
is a function ¢ : C[]] — {1,..., 7}. We say that a subobject has color ¢
if its image under ¢ is 7. An r-coloring ¢ of C[}] induces an r-coloring
on C[¥] by the composition cf, where k—/ [ is in C. If the image of of
is only a single element, we say that ¢ has a monochromatic k-subobject,
namely, the k-subobject represented by & —7 L

We can now state the Ramsey property for a category C satisfying
(a)(o): |

Given integers k, I, r, there exists a number n, depending only on k, 1, r,
so that for all m > n, every r-coloring of C[i] has a monochromatic
l-subobject.

When C has morphisms %k —/ [ which are all the monomorphic
functions from {l,..., k} to {1,..., [}, then this is just the statement of
Ramsey’s Theorem. If C has morphisms k& -—/ [ which are the linear
monomorphisms from V= (v ,.., v to V= {vy,.., vy, where
vy, Vs ,... form a basis for a vector space V over GF(g), then this is the
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statement of Rota’s conjecture. In this case, the k-subobjects of [ corre-
spond to the subspaces of V; of dimension k. Other examples of special
cases of the Ramsey property will be given later.

2. STATEMENT OF THE MAIN RESULT

In order to establish the Ramsey property for certain categories C,
we consider a somewhat stronger version of it which makes the induction
argument easier.

C(k; L ..., L,):  There is a number N = Nc(k; 7; I ,..., ) depending
only on k7,1 ,..., [,, such that for any m > N and any r-coloring ¢
of C['], there is an 7, 1 <i <7, and a morphism I, —/ m such that

c [2] T _.c (7] s {1y )

{1}

commutes, where incl(z) = 7.

"This statement always holds for k£ < 0, since C[}] = o, by convention.
If all the /; are equal, this becomes the Ramsey property stated above.

Theorem 1 below provides the induction step in establishing
C(k; Iy ,..., I,) for certain categories. It establishes B(k + 1;1, ,..., 1)
if we know A(k; 1, ,..., 1,) for all r and /; provided the categories 4 and B
are related in a special way. This relation is given by the conditions below.
For a functor M from A to B with M(x) = y for integers x and y, we
denote by M the induced function from subobjects of x to subobjects
of y. This is given by letting M take the subobject represented by
s =/ x in 4 into the subobject represented by M(s) M) y in B.

Conditions on Categories A and B

There is a functor M from 4 to B with MlHy=14+1,1=0,1,..,
a functor P from B to 4 with P(l) = 1,1 =0, 1,..., an integer ¢ > 0,
and for each I = 0, I,... ¢ morphisms, I - [ + 1, 1 <j < ¢, satisfying
the following:

I. For each £+ 1 =0, 1, 2,..., the diagonal 4 in the following
diagram is epic, where ] (together with the indicated injections) is
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coproduct, and d is the unique map determined by the coproduct to
make the diagram commute:

B[kil]'\

Wl 0

. k=1
T .
/rr” d i
Bl )

II. Foreachs —¢/in B and eachj = 1,..., t the following diagram
commutes:

Pii

! — I1+1
‘g \M(P(g))
) _l.,. § +l

1II. For some I —¢] + 1 in A, the following diagram commutes
forallj = 1,..., &

141
nu \
{ 1+2
L47} M
I+1

Remark. Lets + 1 —"* [in B. Then by III there is some s —¢ s -+ 1
in A such that

s+1
Pys w;
s s+2
%0 M)
s+ 1
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commutes in B for each j. By II, the diagram

l SRLENGE B
fh TM(P(h))
s+1 D oo

commutes for each j. Thus

s+ 1 —

i
s/ \l+1
\ Me)
s+1

commutes for each j.

THEOREM 1. Let A and B be two categories satisfying the conditions
above. Assume A(k; 1, ,..., 1) holds Jor all 1, ,..,1. and r > 0. Then
Bk + 1; L ..., 1) holds for all I, ,..., L., and r > 0.

3. Proor oF MaIN RESULT

We will eventually need a lemma about #-dimensional arrays of points.
We state it now without proof. Proofs can be found in [3] and [2]. (It is
a special case of Corollary 4 below, in fact.) We denote by A" the set of
n-tuples (%, ,..., x,) of elements x; of a set 4.

Lemma 1. Given integers 1 >0, t >0, there exists an tnteger
n = N(r, t), depending only on r and t, such that ifn =N, Ais a set of t
elements, and A" is r-colored in any way, then there exists a set of t n-tuples
(%1(7)-r 2,(7)), 1 < j < 8, all the same color with the property that for
each i, 1 < i < n, either x(j) — j for all J or x(j) = a for all j and
some ac A.

Proof of Theorem 1. We use induction on I — L+ +1.
B(k +- 1; I ,..., ,) holds vacuously if [, < & -+ 1 for anyzorifk 4 1 < 0.
So we assume /; > k+ 1> 0. If any [; = 0, then £ -1 = 0, and
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B(k + 1; I ,..., ) holds trivially, since 3,0 = 1. So we may assume all
I, > 0, and, in particular, that L > 0. Assume, then, that B(k + 15 1,..., 1)
holds for L — 1, and letl; + -~ + 1, =L, l; > 0.

DerINiTION. For 1 < h < m, suppose k+1—/1--h is in B,
and f = M(f") for some k —/" I + h — 1 in 4. For any fixed choice of
Juodnetrendmars 1 <J <t let g = @rgy, - Then the (k+ 1)-
subobject of [ - m represented by the composition

Erl—2sl th-2 04 h41—>- clim 12 tm

is said to have signature (h;j,_i .., ja) With respect to [ and m. (The
signature need not be unique for a given subobject, nor must every
subobject have a signature.) An 7-coloring of B[] such that all
(k + 1)-subobjects with the same signature have the same color is called
an (I, m)-coloring.

For integers [ and m we define recursively some numbers needed to
prove Lemma 2 below.

v = Nk r™ 75 L, )

vy = Nk 1™ 0y + Loy vy + 1)

O = N(k; 77 Oy + 1oty Vg + 1)

The existence of these numbers is guaranteed by the hypothesis of
Theorem 1.

LeEMMA 2. With the same assumptions as in Theorem 1, let | and m be
nonnegative integers; let x > v,, + 1; and let B[,%:] = {l,...,7} be an
r-coloring. Then there exists | + m —9 x in B such that cg is an (I, m)-
coloring of B[L{T].

Proof. We use induction on m. For m = 0 the lemma is trivially true.
Assume that it holds for m — 1. Then by induction, and by the choice
of the v;, there is some ©v; + m —¢x in B such that B[Zflm] is
(v4 + 1, m — 1)-colored by ¢g.

We now color B[Zf,l] as follows: Two subobjects, represented by
E+1—>'9,41and B+ 1—"2, + 1 have the same color if and
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only if for each choice of j,,_, s J1, 1 < j; < ¢, the subobjects repre-
sented by the compositions

k+1‘f+vl+1—(pL>111+2—~>---——»vler—l—wﬂi»vler
and
k+l—fgviq—l—¢1->7;i+2——>---——»vi+m—1&"1>vi+m

have the same color, where P = Pr 444, | <i<<m— 1. This is an
" _coloring of B callite.,  *

Next, we color A[}"] by the coloring induced by M. That is, a sub-
object in A[}1] is assigned the same color as its image under M in B[Zﬂl .
In other words, ¢’M is the coloring we use. By the choice of v, , there is
some 7, | <7 <7, and some [ -—w v, in A such that the following

diagram commutes:

n _», v M g1
al)) 4[] (Lo 77
{5}
Thus all the subobjects in M(A[}]) have the same color in B[*1] colored

by ¢ M{w).
Suppose k-1 —/[+ hisin B, | <h < m, with f = M(f’) for
some k -/ [+ h — 1in 4. Consider the following diagram:

'Z)l _’_ h 9?111+h,7'h 7)1 + h _‘_ 1 e e
M(w,f')
I s T“h+l
f Prin,j
k41 Itk % o hp
——, + m— 1 %1+m—1.lm4 711 + m
I"m—l ’um
. l—f—m _1 ‘pl+m—l.3m_l l+m

where u, = M(w), wu, = M(P(u;_,)), i=2,3,..,m, and w, = w,
w; = Plu;4), 1 = 2,3,..., m. By condition II this commutes for each
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choice of Jjy, fui1 s jms - Consider any subobject of I+ m with
signature (1; J,,_y 5., j1) With respect to [ and m. Let it be represented by
k - 1 —*¢ [ + m, where e is the bottom row of the diagram above with
h = 1. Then u,,e represents a subobject of v; -+ m. By the definition of ¢’
and the choice of w, all such subobjects with the same signature
(1 fiu_t »---» J1) have the same color in B[;’cflm], since the diagram above
commutes. On the other hand, consider a subobject of / + m with signa-
ture (#; fu_y 5 Ju) B == 2, and let it be represented byk+ 1—¢1+m,
where e is the bottom row of the diagram. By the commutativity of the
diagram, u,e = bM(w,f'), where v, + h —P v, + m is the top row
of the diagram. This means that u,e has signature (A — 1; j,_1 5.5 Jn)
with respect to v, -+ 1 and m — 1. Since ¢ was a (v; + I, m — 1)-
coloring of B[Zflm], the color of this subobject is determined only by
the j; . Thus the color of any subobject with signature (%; j,,_1 »..., J) With
respect to / and m, h > 1, has its color under the coloring cgu,, deter-
mined only by the j; . So ¢g4,, is an (I, m)-coloring, and the lemma is
proved.
We may now proceed with the proof of Theorem 1. Let

| = max. Nek + 1575 Ly Ly s I — 4 Ly e 1),

a number which must exist by the induction hypothesis. Let y = r"***,

where ¥, .., is the number given by property (b). Let m = N(y, 1),
where N(y, t) is the number given by Lemma 1. Let v,, be the number
used in the hypothesis of Lemma 2 (depending on [ and m), and let
x > v, + 1. Finally, let B[%;] >°{l,..,7} be an r-coloring. By
Lemma 2 there is some [ 4+ m —¢ x in B such that ¢g is an (/, m)-coloring
of B[}t™]. We now color the m-tuples (f; ..., jm), | < j; < t, by letting
(j1 ye-r juu) and (B ..., k,,) have the same color if and only if for each
k + 1 —" I in B the subobjects represented by the compositions

Rl 2 s s L pm =1 2
and
Rl ol i w1 m

both have the same color in B[}%]. This is a y-coloring of the m-tuples.
By Lemma 1 and the choice of m, we can find ¢ m-tuples (j1(2),---, jm(2))s
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I < 2 < ¢, all having the same color such that for each i either j,(z) = 2
for all 5 or jy(2) = j; for all  and some fixed j;. Let 7, ,..., iz be the ¢
for which j(z) = 2 (there must be at least one of these since there are ¢
m-tuples here). For 0 < a < 4, let k, denote the composition

‘Dl+ia,5ia+1

Dt dy——5 iy 41— o

Vitigr-2di, 1
. " .
e Dy — 22— T

where we let 4, = 0 and i,,, = m + 1. Consider the following diagram:

Iy i

. Cipi—1.d L. .
I w4+ — 1 il il Sy, I 4 iy — 1 —>--
1 1 2
“7’1“1—1.5 Plriy-1.5
. M(ey) .
I+ ! L +dy ——
! - Plaig_p~1.7 - hq g
e i e PAPAE R = Rl LN IS —
l ‘1’1+1‘d72—1>i
Meg_p)
— i, 2 %
By . Pryi,—1.7 .k
Sy Y M DU I VR SN QU

—_— a1t 1 i
% Mley_y) I+ id—l

where the [ 445 , — 1 —>%-s14+4; . — 1in A are those guaranteed
by the Remark (following Condition III) to make this diagram commute
for eachj =1, 2,..., t.

By the choice of the &, we have for any k -+ 1 —* [ that the # sub-
objects represented by

Pr4iy—1,5

SN Ny BNy PR I+ i

Meg_yeq_o"eger)

l+m],

I4i, 0 4m in B[k+1

I<j<y



426 GRAHAM, LEEB, AND ROTHSCHILD

all have the same color. By Condition II, the following diagram commutes
for all j:

Idy —1 T8 g
] ko 1M(P(h.,))
I P15 l+1

Then letting o« = hgM(eq_; **- e1P(hy)) we see that for k- 1 —* /in B
the subobjects represented by the z compositions

[ ANy LNy SR LN S B

all have the same color. Thus L‘%; are equal for all j =1, 2,..., ¢,
on B[44]- -

Now consider any subobject of M(A[}]) in B[}%}]. Let it be represented
by R4+ 1 —~/1+ 1 in B, where f = M(f’'), k—/"1 in A. Then the
subobject represented by of has signature (¢4; j,—1 -+, J;,) With respect to
[ and m, since of is just hzM(e; 5 -+ e, P(hg) f). Since [ + m is (I, m)-
colored by ¢g, all subobjects of / + m with this signature have the same
color. Thus ¢Fa gives the same color to any subobject of M(A[L]),
since the signature was independent of the choice of f. That is,
cga(A[})) — {q) for some g, 1 < g <.

Consider the coloring cgag, , on B[,.};]. By the choice of /, either there
is some [, —/» l in B such that

d

L ] &e11fy

k+1 *’{P}, p#%

or there is some [, — 1 —J« [in B such that

s 1)

In the former case, we have the desired monochromatic subobject, and
the theorem is proved. Hence we may assume that

Cg“q’t,lf_a_) (g

2]
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We recall that cgag,, = cgag,; on B[,!,] for all 7. In particular,

cgag, ; f, (B [5: _; ”) = {¢} for all 5.

By Condition II, ¢, , f, = M(P(f,) ®1,1.55 J = l,..., . Thus

M oo (B[ 1) = @ 5= 1ot

~ Now consider any subobject in ]W(A[l?;]), and let it be represented
by &+ 1 —/1[, in B, where f = M(f'), k " [, — 1 in A. The sub-
object represented by M(P(f))f = M(P(f)f') is in M(A[L)), and thus
has color ¢ by the coloring cga. So cgM(P(f,)) colors all subobjects in
M(A[* ') color ¢. We also saw above that cgaM(P(f,)) colors all

subobjects inl Eq_l,]-(B[}g:]) color ¢. But by Condition I, this accounts
for all of B[;",], and hence [, —**PY) x 5 the desired morphism, and

the theorem is proved.

4. CONSEQUENCES

ProposITION 1. Let € be a class of categories such that for each
category B in € there is a category A in € such that 4 and B satisfy the
conditions of Theorem 1. Then B(k; 1y ..., 1) holds for all k, L.yl and all
Bin®.

Proof. B(—1;1,,..., ) holds vacuously for all [, ,..., ., as observed
at the beginning of the proof of Theorem 1. This holds for all B in %.
Thus for each B we can find a suitable 4 and apply Theorem 1 to obtain
B(O; ly,.., L) forall [ ,..., L . Proceeding in this fashion from 0 to 1 to 2,
etc., we obtain B(k; [, ,..., [,) for all &, [, ,..., [,and Bin %,

COROLLARY | (Ramsey). Let C be the category with objects the
nonnegative integers and morphisms k —7' | all the monomorphic functions
Jrom{l,..., k}into {1,..., I}, where composition is Just composttion of functions.
Then C(k; 1y ,..., L) holds in general.

Proof. We must find a class % containing C which satisfies the
conditions of Proposition 1. For % choose the single category C itself.
This clearly satisfies (a)(c). So for 4 and B both equal to C, we must
show that they satisfy the conditions of Theorem 1.



428 GRAHAM, LEEB, AND ROTHSCHILD

Let P be the identity functor on C. For any k —/ [ in C, let M(f) be
the function 2 + 1 —/ [ + 1 in C given by letting f'(x) = x, x < &,
and f'(k+1)=1+1. Let ¢; be the function from {l1,...,1} to
{1,..., I + 1} which acts identically on {I,..., I}. That is, @ (x) = x for
x < I. Then we claim these choices, together with choosing ¢ = 1
satisfy I-III.

Consider a subobject in C[;}}] represented by some k + 1 —/ I -+ 1.
First suppose f(s) = [ + 1 for some 5. Then f represents the same sub-
object as fm, ., , Where 7, ;,, is the permutation of {I,..., & 4 1} fixing
everything except s and k + 1, which it interchanges. m,;., is an
isomorphism and is its own inverse. Let X —/" [ be defined by letting
F'(®) = fropm(x), 1 < x <k Then clearly M(f') = f. 'Thus the
subobject we chose is in M(C[}]). The only other subobjects are repre-
sented by some k& + 1 —/ [ + 1 where f({1,..., kK + 1}) C{1,..., [}. Then
letting & + 1 —/" [ be defined by f'(x) = f(x), 1 < x < k, we have
f = ¢,f’, and the subobject is in ¢(C[;L;]). This establishes I. II is
clear from the definitions. III follows by taking e to be ¢, ,, since
M(p,_,)(x) = x for | < x <<I— 1. This establishes Corollary 1. We
note that if one examines the argument used in the proof of Theorem I
for this special case, the usual proof of Ramsey’s Theorem emerges.

Let V be an infinite-dimensional vector space over GF(q) with basis
vy, Vg ,.... Foreachk = 0, 1,...,let V;, = {vy,..., v, Vy = <0). Let C
be the category which has objects 0, 1,..., and morphisms & —° [, where
@ is a linear monomorphism from ¥V to V;. Composition is ordinary
composition of mappings. C clearly satisfies (a)—(c).

CoroLLARY 2 (Vector Space Analog). For the category C described
above, C(k; 1, ,..., L) holds in general.

Proof. We apply Proposition 1 to a class containing C. Let A be an
infinite-dimensional vector space over GF(¢) with basis a, , 4, ,..., and let
A, = @y sy pyy, Ay = <0>. For m = 0, 1, 2,..., the category C,, is
defined as follows: The objects of C,, are 0, 1, 2,..., and the morphisms
k —w9) [ are all pairs (w, ¢) where w € 4,, @ V;and ¢ is a linear mono-
morphism from V; to V. Let k —%= [, where w = i, a; ® w;,
w, €V, and | —@# n be morphisms in C, . Then their composition is
defined to be k —w4) n, where y = x + Yiv; a; ® d(w;). Thus we
can think of these morphisms as certain special affine transformations
from 4, Q V,, into 4,, ® V,. (a)-(c) are satisfied for the C,. We
choose for our class % all the C,, . When m = 0, we get the category C
of Corollary 2.
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For each m, let B = C,, and A = C,,., . We show that these satisfy
Theorem 1. To define M, consider a morphism k —® [ in C,,., .
Thenwe 4,,,; @ V,can be written uniquely asw = w’ + a,,,; ® @1,
where w' e 4,, @ V. Let ¢’ : V., — V,,; be determined by letting
‘P’(vk+1) = Uy + Wy, and ¢' = @ on Vi. Then define M((w7 (P)) =
(@', "), where k + 1 -’ |+ 1isin C,, . One can verify by a direct
check that M preserves composition. We next define P. Let k —w=) [ be
in C,, . Then P((w, ¢)) = (w", ¢"), where w" = w + a,,,, ® 0, and
¢" = @. Clearly P preserves composition. Also, since the identity
morphism for & in C,, is (0, 1), where 1, is the identity transformation
on V, , and similarly for C,,,, we see that M(l) = / + | and P(l) = [
for each [ Finally, let t = | 4,, | = ¢, and for each element a€ 4,,
and each / let ¢, = (¢ ® v,,,,¢) in C,,, where ¢, is the map from
V, to V., acting identically on V,. Then these choices are sufficient
to satisfy I-III.

To check I, let & + 1 —®") [ + ] represent a (k + 1)-subobject of
4+ 1in C,,. First suppose ¢'(V;.1) € V;. Then we can choose some
isomorphism ¢ : V; ; — V., such that ¢'(V,) C V, and ¢'f(v;,,) =
vy + ¢ for some o' e V. So (w', ¢') and (@', ¢')(0, ) = (w', ¢'¥h)
represent the same subobject, as (0, /) is an isomorphism. Now let
k —) I bein C,,.,, wheregp = g on V; ,andw = w’ + a,, ® 7.
Then we have M((w, ¢)) = (%', ¢'$). Thus all subobjects represented
by a (w’, ¢") with ¢'(V,,;) € V; are in M(C,,,4[}]). On the other hand,
if o'(Vy1) C Vi, then (%', ¢') = (" + a Q v;.4, ¢') for some a€ 4,,
and some w" € 4,, ® V,. But

(@" +a @) vi1, ¢) = (@ i1, @)W, @) = @ro(@”, ¢"),

where ¢” = ¢" on V,.,, ¢": Vi — V;. Thus the subobject is in
@1(Coul11])- This establishes 1.

To check II, let s > [ in C,,. Then M(P((w, ¢))) = (%', ¢'),
s+ 1 -]+ ], where w' = w and ¢’ is the mapping determined
by letting ¢’ = ¢ on V, and ¢'(v;,,) = v, . Clearly

(a ® Vit el)(w’ (P) - (‘wl? (PI)(a ® 7}3+1 3 es)'

This establishes I1.
Finally, for III, consider in C,,; the morphism

/ (am+l®vl+l'e£)_)l+ 1.
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M(ap41 @ vp1, €p) = (0, 4), where " acts identically on V,, and
$'(v144) = 010 + v, . Now we have for each ae 4,,,

(a @) Vs s €)@ ® V15 €) = (0, 4')(a @ Vyi1s €)-

This establishes I1I.

Thus C,(k; 1, ,..., 1) holds in general for all m by Proposition I. In
particular, as noted above, if m = 0, this establishes Corollary 2. We
note also that for m = | the subobjects of an object / can be considered
to be affine subspaces of V,. Thus we have also proved the affine version
of Ramsey’s Theorem, which we state below.

CororLLaRY 3 (Affine Analog). For C = C, as described above,
C(k; 1y ..., L) is true in general.

The application of Theorem 1 to the case 4 = C,, B = C, is just
the statement that the affine analog for % and all 7 ,..., [, implies the
vector space analog for k + 1 and all /, ,..., .. This result was already
known [1, 5], and the previous proof is the same as the proof of Theorem 1
specialized to this case. There was another way given in [5] to show that
Corollary 3 implies Corollary 2. Namely, it shows that Cy(k; 1/, ,..., )
implies Co(k; [, ,..., 1,). This argument is also a special case of Theorem 1,
and we can describe it here.

Actually, we replace C, with the equivalent C, defined by letting
k—/1in C) if and only if k — 1 —/]—1 is in C,. We also must
adjoin an identity 1,to C/. If K ) [isin C; , then M((w, ¢)) = (0, ¢)
in Cy’, where we recall that £ + 1 —>© [+ 1 in C,/. We let t = 0,
thus making the choices of P and ¢;; unnecessary. Clearly Cy'[L7}] =
M(Cq[}]), and I is satisfied. II is vacuously true as is III, since ¢ = 0.
Hence by Theorem 1, if C/'(k;{,..., /) holds for all I ,..., [, then
Cy(k + 1;1,.., L) holds and this is just Cy(k;/ ,..., 1), as desired.

Finally we obtain the Ramsey theorem for n-parameter sets. We refer
the reader to [2] to see that the definitions used there are essentially the
same as those we will use here. That is, the partially ordered sets of
subobjects are isomorphic.

Let G be a finite group, and let 4 = {q, ,..., ato} be a finite set. Let
C(4, G) be the category with objects 0, 1, 2,..., and morphisms described
as follows:

For each k and /, the morphisms & —:9 [ are diagrams

G« {1, }ud—1s{l,. kU4,
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where f is any epimorphic function which acts identically on 4, and s
is any function such that s(a¢) = | € G for a € 4. Composition of the
morphisms k —% [ and [ -0 m is given by k —U959'0 m_ where fg
is ordinary composition of functions, and sg - ¢ is defined by s(g(x)) - t(x) =
(sg - t)(x)in G for x e {1,..., m} U A.

We note several things about this choice for C(4, G). First there is
no mention of the relationship of G to 4. G need not be a permutation
group on A, nor even act on it at all. This was a necessary assumption
for part of the proof in [2]. Second, we allow | 4 | < 2 here, where in
[2] | 4| = 2 was required. Actually, in the situation in [2] where the
n-parameter sets under consideration had constant set B C 4, we did not
need | B| > 2. But this took a separate argument. What we have here
is the general result for n-parameter sets for arbitrary sets of constants B.

COROLLARY 4 (n-Parameter Sets). If C = C(4, G), then C(k; [, ,..., L)
holds in general.

Proof. Again, we consider a class % containing C(4, G) for which
Proposition 1 holds. There is more than one possibility here. We will
give the proof in detail for one class €. Then we will describe another
class but omit the detailed verification of I-III. It is this second
class ¢ which provides a more direct translation of the proof in [2].
The first 4 we describe now is somewhat different.

Let {a,,a,,a;,..} be an infinite set. For each t = 1,2, 3,..., let
4, = {ay,.., aj}, and let C;, = C(4,, G). Thus C(4, G) above is C,
here. We claim that 4 = C,,,; and B = C,, satisfy Theorem 1, for all
m > 1.

To see this we first define M. Let k —% [ be in C,,,,. Then
M((f,5)) = (f',s"), where k1 —>Y"="] 4+ 1 in C,, is defined as
follows. For x € 4,, U {l,..., I}, f'(x) = f(x) if f(x) € 4, U {L,..., &},
J'(x) = k+1iff(x) = a,,,y, and f'(I4+-1) = k+1. Forx € 4,, U {1,..., I},
s'(x) = s(x), and s'(! + 1) = 1. One can check that M does preserve
composition. For the identity map (e;, 1), ! in C,,,,, where e, acts
identically on / and I1(x) = 1€G, xe€ 4, U/{l,., 1}, we see that
M((e;, 1)) = (e;1, 1)in C,,, s0 M(l) = 1 + 1.

Next we define P. Let k —"" [ be in C,, . Then P(h,r) = (h", "),
where k —"" [in C,, ., is defined by letting 2"(x) = h(x) and #"(x) =
u(x) for x € 4,, U {1,..., I}, and 2"(a,, 1) = @y , 7"(@y1) = 1 € G.
P clearly preserves composition, and P(l) = [ for all L

Finally, for each /and any ge G and any j, 1 <j < m, let ¢, ;) =
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(d;y, 1), or just (§, g), for short, where d;(x) = xforxe{l,..,l} U 4,,,
di(l + 1) =a;,and ly(x) = e Gforxe{l,.,. [ UA,, 1, (I+1)=g.
These ¢’s are indexed by the pairs (7, g). Welett = |4, | |G| =m | G|,
and for the choices above we verify I-1I1.

Let &+ 1—Y9 [ 1 represent a subobject in C,[§]]. Suppose
first that f(/ 4+ 1) ¢ 4,, . Let = be a permutation on {1,..., k + 1} U 4,,
fixing all ae A4, and such that =f takes / + 1 onto k2 + 1. Let
w=(s(! + 1))7, and let (f',s") = (f, s)(=, 1,.1), where as above, 1,
maps {1,..., K} U 4, onto 1 € G, and k + | onto u. Then f’' = =f and
s" = 1, f * 5. In particular, (=, 1,,) is an isomorphism in C,, (its inverse
is (771, 1,-y71)), we see that ( f, s) and (f', s) represent the same sub-
object of / + 1. Now let &k —/":5") [ be defined in C,,,; as follows. For
xed,V{l,., I}, weletf"(x) = f'(x)if f'(x) %~ k + 1,and f"(x) = a,,,,
if f'(x) = k + 1. Welet f"(a,,.,) = a,,,, . Forxe 4,, U {l,..., I}, we let
s"(x) = s'(x), and s"(a,, ;) = 1. Then M((f", s")) = (f', s'). So the sub-
object represented by ( f, 5) is in M(C,,.;[}]). This is the case, then, for any
(fs s) with f(I + 1) ¢ 4,, . On the other hand, suppose f(I + 1) = q, € 4,,.
Let R + 1 =" [in C,, be defined by f'(x) = f(x) and s'(x) = s(x)
for xe{l,..,l} U 4, . Then (f,s) = (j,s({ + D)(f,¢) and (f,s)
represents a subobject in ( , s(! + 1))(C,.[;}1]). This establishes I.

For II, we note that for k —-* ['in C,, , M(P((f, 5))) is the morphism
k41— 1+ 1 in C,, where f'(x) = f(x) and §'(x) = s(x) for
tef{l,.,ud,, and f'l+1)=k+1, (+1)=1. Then for
each j and g we see that (7, g),(f, ) = (f', s')(J, &), , establishing II.

To verify 111, we consider (m + 1, 1), in C,,, . Then M((m 4 1, 1))
is the morphism & 4 1 -V [ 4 2 in C,, where 1(x) = 1 for all x in
{1,..,1 + 2} U A, and €'(x) = xforxe{l,., [} U4, ,and (I + 1) =
[+1, e(l+2) = I+ 1. Then clearly (j, £),1(J, &)1 = (¢, 1)(j, &) =
M((m + 1, 1);)(J, g); - This establishes III and completes the proof of
Corollary 4.

The alternate choice for the class € to prove Corollary 4 is as follows.
For each m =0,1,2,.,, let 4, = AU ({l,.,m} X G), and let
C,' = C(4,', G). Then Cy = C. Let €’ be the class of all C,,’. For
each m, C,,,, and C,,” satisfy Theorem 1.

For k=91 in Ch.,, we let M((f,s) = (f,s), where for
xed,V{l,., I} we let

f(x) = f(x) and s'(x) = s(w) if f(x)ed,v{l,., k)

for f(x) =(m+1,8), we let f'(x) =k+ 1, s'(x) = s(x) - g; and
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F'U+1)=k+1, ¥(+1)=1. For k—"Y9] in C,' we define
P((f,5) = (f,5) in Cp,y by letting f/(x) = f(x), o'(x) — s(x) if
xed, U{l,..,l}, and f'(m + 1,8) = (m + 1, g), sS((m+1,9) = 1.
For ae 4,, and ge G, as before, we let P10 = {€q15 1;). Then I,
IT and IIT can be verified, with t = ' 4,, | | G |.

Now we still do not have an exact translation of the proof in [2].
In particular, we have taken no account of any action of G on A. To
handle this we consider a set 4 and a group G actingon A, a — a%c A4
for g€ G. We consider the category C(A4, G) and obtain from it the
category C(4, G) by identifying any two morphisms & —"* | and
k —{@w [ for which f(x) = g(x) and s(x) = u(x) if f(x) e {1,..., k}, and
F(y® = g(x)*“otherwise. By considering G toacton ({1,..., m} x G)by
(4, &)" = (¢, hg) for all h € G, we obtain the categories C,,’ = c4,,, G).
The categories (TH and C,,’ satisfy Theorem 1, where we take for M
and P the functors determined by the M and P for Cpni1 and C,,” above
by their action on classes of identified morphisms. For the ¢’s we use
classes of identified ¢, , from above. There are | A, | of these,
represented by the ¢;(, ;. Thus we let £ — | 4, | here. Letting
%’ be the class consisting of all C,,, we can apply Proposition 1. This is
the exact translation of the proof in [2].
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Errata

Vol. 8, No. 3 (1972), in the article, “Ramsey’s Theorem for a Class
of Categories,” by R. L. Graham, K. Leeb and B. L. Rothschild,
pp. 417-433.

Page 420, (first diagram): M should read M.

Page 421, (line 13): First n should read N.
(lines 16-17): a should read a; .
(line 19): After “<<0” insert “and trivially if £ = 0.”
(line 20): After “>0" insert “and ¢ > 0.”
Page 422, (lines 21-22): [ and m be nonnegative should read / > 0,
m = 1.
(line 25): m = O should read m = 1.
(line 26): After “assume” insert “for some m > 2.”

(line 29): & + I should read & + 1.

Page 423, (line 5): v; should read v, .
(line 7): & 4 [ should read k& + 1.

Page 424, (line 14): j,,_, should read j,,_, .

Page 426, (line 10): j,,_; should read j,,: 7, should read 7; 4 1.
(line 11): Second “‘f”” should read f".

Page 428, (line 2): f'(x) = x should read f'(x) = f(x).
(line 12): M(f’) = f should read M(f’) = fry 111 -
(line 15): Last “k” should read & + 1.

(lines 17-18): ¢,_, should read ¢, .
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(line 18): 1 <& <! — 1 shouldread 1 < x <L
(line 34): V; should read V.
(line 34): C, should read C,, .
Page 429, (lines 19-20): delete “So ... isomorphism.”; replace with
“Furthermore, for a suitable choice of ued,, ® V,,;, we have

(@', @' )u, §) = (@', ¢'¢), with &' € 4,, ® V;. Of course (@', ¢’) and
(@', ¢’4h) represent the same subobject since (u, ¥) is an isomorphism.”

(lines 21-22): " should read @'
Page 430, (line 30): After “here” insert “In particular, the categories

corresponding exactly to the notions in [2] are the quotient categories
described in the last paragraph in this paper.”

(line 35): (&, s) should read (f, ).
Page 431, (line 34): P(h, r) should read P((h, r)).

Page 432, (lines 8 and 10): 1, should read 1,,7.
(line 10): After “in particular’ insert “‘since”
(line 11): 1,147 should read 1, .
(line 23): le should read xe.
(line 26): k should read /.
(line 28): e should read ¢’
(lines 36-37): A4,, should read 4,
(line 38): s(x) - g should read g - s(x).

Page 433, (lines 3, 4, 5, 17, 18): A,, should read 4,,".
(line 4): (e,;, 1;) should read (d,,;, 1,).
(line 13): kg should read gh.
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