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INCREASING PATHS IN EDGE ORDERED GRAPHS

by
R. L. GRAHAM (Murray Hill) and D. J. KLEITMAN (Cambridge)

To the memory of A. RENYI

Given an undirected graph G having n vertices and ¢ edges let the
“ordering” N be a 11 map between the edges of G and the positive integers
<q. A path of length k is a sequence (e, . . . , e) of k distinct edges such that
e; and e¢;,, have a common vertex. A path is simple if the only edges which
have a common vertex are of the form e;, e;,, for some i. An increasing path
is one in which N(e;) << N(e;) whenever ¢ <_ j.

The following questions have been raised by CrvATAL and KoMros [1]:

Suppose G is a complete graph K, so that ¢ =

n . .
NE How long an increasing

path must exist in G% How long a simple increasing path must exist? If we
let P(N, @) and S(N, @) denote the lengths of the longest increasing and simple
increasing paths, respectively, in G with the ordering N, then the preceding
questions are concerned with
fn) = min P(N, K,) and g(n) = min S(V, K,) .
N N

In this note we give a complete answer to the first question and a partial
answer to the second. In particular we show that for any edge ordered graph ¢
having n vertices and ¢ edges there is always an increasing path of length at
least 2¢/n. From this it will follow that f(3) =3, f(5) =5, f(n) =n — 1
for n =« 3,5. The length g(n) of the longest simple increasing path in an
edge ordered complete graph K, has not been determined. We show that

g(n) g%(]ﬂln— 3 — 1) but this is probably a weak bound, and we obtain a

gimple construction for which g(n) <C gz-% . We conjecture that the correct bound

is closer to the latter.

The results below are divided into four sections. The first two discuss
the lower bounds on P(N, @) and S(N, K,), respectively, and the latter two
deal with the upper bound.
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L. Lower bounds on P(N,G)

THEOREM 1. The longest increasing path in any edge ordered graph @
having n vertices and q edges has length at least 2g/n.

Proor. Given an edge ordered graph G on n vertices v, v,, . . ., v, We
define p(v;, @) to be the length of the longest increasing path ending at .
Suppose the edges of G” in order are €1, €, . . ., €4, and suppose that G” has
edges, in order, € .., €qy,eq 1 With €441 Joining v, to v,. Then

(v, G") = p(v;, @) for any j,
P, @) = plo, &) + 1

and

p(vs, G") = p(o, &) + 1

since one can extend the longest increasing path ending at v, in G’ by the

edge e, , arriving at a path of length p(vs, G') + 1 ending at v,, ete. Upon
adding these relations we obtain

(1) =2 P @) = (S, @)+ 2.
J J

If we start from the empty graph and build up G edge by edge using this argu-
ment we obtain the result that if G has ¢ edges then

(v, ) = 2¢
j=1

from which it follows that the average over j of p(v;, @) is at least 2g/n. Thus,
at least one v; must have p(v;, G) as large as 2g/n and the theorem is proved.

The argument also indicates the type of ordering which will minimize
the maximal p(v;, @). This will be one which, as far as possible, satisfies (1)
with equality and for which all the p(v;, G) are as equal as possible.

For the complete graph K, on n vertices, g = [7;) so that 27 _ n — 1.
n

In Section T we show that for n -« 3,5, one can find an ordering for which
p(vj, K,) = n — 1 for all vertices v;. This clearly can occur only if the inequali-
ties (1) are always equalities in this ordering.

For n = 3, there is essentially only one possible ordering, and for this,

max p(v;, Kg) = 3 = f(3) .
J

For n = 5, it is possible to exhaust the possible orderings; in each case
there is an increasing path of length 5. This result can be verified in a less

exhausting manner by an inspection of the sequences (p(vy, @), p(vy, G), . ..

+ .., p(vs, @)) with G denoting the graph which consists of the first five edges
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of the edge ordered K ;. If f(5) were equal to 4, there would be an ordering of
the edges of K in which all the inequalities (1) were equalities. For such an
ordering the sequence above would have to have one of the forms (for some
ordering of the vertices)
(2,2,2,2,2),
3,222 1),
(3,3,2,1, 1),
(4,3,2,1,0).

(All other possibilities are easily eliminated.)

One can find an increasing path in K ; by adding to any increasing path
ending at v; an increasing path in the complement of G starting at v;. The
corresponding sequence for the increasing path in the complement of @ starting
at v; must add to the sequence above to yield (4, 4, 4, 4, 4) if we are to have
f(5) =4

One can easily verify that a sequence (4, 3, 2, 1, 0) can only arise if on€
vertex is missing in @. But then every vertex must appear in the complement
of @, so that its sequence contains no 0’s. This sequence will not give rise to
a (4, 4, 4, 4, 4) sequence. The sequence (2, 2, 2, 2, 2) can only arise if ¢ consists
of a “4-cycle with a tail”’. Since the complement of such a graph contains
a triangle, such a sequence must force an increasing path of length 5. By enumer-
ating the graphs corresponding to the two remaining sequences (3, 2, 2, 2, 1)
and (3, 3, 2, 1, 1), one can easily show that it is not possible to have sequences
arising from @ and its complement which sum to (4, 4, 4, 4, 4). This shows
that f(5) == 5. On the other hand, the ordering (e, ey, €5, €s3, €45, €13, €5y,
€35, €41, €53) Where ¢;; joins vertices v; and v}, is an edge ordering of K in which
any increasing path can never contain two consecutive edges in the ordering.
This shows that f(5) = 5. The upper bound on f(n) for n == 3,5 will be dealt
with in Section III.

II. Lower bounds on S(N,G)
In this section we obtain a lower bound on g(n) of the form c}/n.
THEOREM 2. In an edge ordered complete graph K, there always exists
a simple increasing path of length at least %(Vm — 1).

Proor. Given an edge ordered graph G, let s(vy, @) denote the length
of the longest simple increasing path ending at v, in G and let (v, G) denote
the number of edges e in G satisfying:

(a) e joins v, to v;, for some 7, so that (b) holds;
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(b) in the graph G(e) consisting of the edges of G preceding (and exclud-
ing) e in our ordering, all simple increasing paths of length > s(vy, G(e)) which
end at v, also contain v;.

If G’ contains one more edge than G has, say, the edge e which joins v;
and v, and the edge e follows all the edges of G in our ordering, then we have
G’(e) = @ and it is not difficult to see that at least one of the following possi-
bilities must occur:

(i) tv;, @) = t(vy, G) + 1,
(@) v &) = tvp, @) + 1,
(i) s(oj, @) = svn @) + 1, s(vp &) = (0, @) + L.
By adding these relations we obtain
Z(S(Uk,é’) )/l—{—Z(svk, ) + Hv, @)
and hence '

3 (s, K)o+ o, K ) =20,
k

On the other hand, as consecutive edges are added to a graph G, the
value of #(vy, ) can increase at most s(vy, @) — 1 times (each time by 1)
without having the value of s(v;, G) increase, since by the definition of ¢,
each time (v, ) increases we have added an edge which joins », to a vertex
v; lying on all current longest paths to v,. Thus,

t(vy, K,) <—s(vy, K,) (s(vy, K,) — 1).

1
2
Combining these inequalities we obtain

2 S(vk’ Kn) (S(ka Kn) + 1) Z 'n(n - 1)
k

which implies that the average value and hence maximum value of s(vg, K,,)
exceeds — (|/ 4n — 3 — 1), thus proving the theorem.
Wlth additional effort this estimate can be increased to one of the form
c¢)n for some ¢ > 1.
III. Upper bounds for f(n)

For a graph G, let P(G) denote min (P(N, G)). The following observation
N
asserts that P is subadditive.
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Facr.
If G=U G, then P(Q)< ZP(GR).
k k

Proor. We can assume without loss of generality that the G, are disjoint.
Let N, be an edge ordering of Gy such that P(N,, Gy) = P(G:). If G, has ¢,
edges define an edge ordering N on G by

N(e) = 3'q;+ Nyle) for e in G, for all k.
i<k
In other words, first all the edges of G, are labelled according to N,, then all
the edges of G, are labelled in the same order as given by N,, etc. For this N,

we certainly have
P(@,N)< 3 P(G))
&

which completes the proof.

We now apply this result to K, to show that the bound on f(n) in Section 1
is exact.

For n = 2m, it is easy to decompose K, into » — 1 disjoint matchings
or 1-factors (i.e., subgraphs consisting of m disjoint edges). But if K is a match-
ing then P(K) = 1 so we have

f(em) = P(K,,) < 2m — 1.

For n = 2m 4 1 we must work a little harder. Suppose ¢ is a graph
on k vertices in which each component consists of an even cycle with a (pos-
sibly empty) set of simple edges (“tails”) at each vertex. Thus, G has k edges
and typically looks like the graph in Fig. 1. Let us call such graphs G admis-
sible. Tt is easy to see that if G is admissible then P(G@) = 2. For, in each com-
ponent we simply assign the low block of integers to alternate edges in the
even cycle, the middle block of integers to the tails and the high block of
integers to the remaining edges of the even cycle (cf. Fig. 1). For this ordering
N, P(N, G’):: 2. Thus, to show that the bound of Section I is exact; it suffices

14
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to show that for n = 2m 4+ 1 > 7, K, can be decomposed into m admissible
subgraphs.

We first exhibit some special decompositions for K,, K,, K, in Fig. 2.
These decompositions each have the properties:

(i) K »is the edge disjoint union of the ¢, ;, 1 < i < m.

(i) Each @, ; is admissible and has the disjoint union of 4,, B, and
{g,} as its set of vertices.

(iii) |4,] = | B,| = m.
(iv) an,; and B, ; belong to even cycles in G, ;.

{an,f} =4, U {ﬁn,i} =B
1<igm

1<i<m

Let us call such a decomposition special.

2
3
6$4
5
671

, 672 673
gy ={2} agg-{1} 07313}
B7q ={5} B72 {4} B73- - {6}

A7 {123} B7 {455} g-, {7}

10%:E

. Go3 Goy
OCgl1‘{Lf} (X.gz {3} &93 {2} (1,94 {1}

ﬁ;,_ Ag {1234}, Bg- {5676} gg= {9}

WaSs

G114 G2 G113 G114 G115
oaqy=B3) w8} wy3e{2) oyt oyyge{1)
Byyg={8})  Byp={10} Byy3={T}  By,~(9)  By5={6)

Kﬁ.’ A11={1,Z3,4_5}, B11={5,7,8,9,10} G- {11}

Fig. 2
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We next show that if Ky, , and Kym ., both have special ‘decomposi-
tions then so does K,y om ;. We imagine starting with disjoint copies of
K3m+y and Kypm 4y and their respective special decompositions and we identify
the vertex gy, in Kypmy, with the vertex gop 4, in Kop .y, giving us a total
of 2m + 2m’ -+ 1 distinct vertices. We define:

Agmomt 41 = Aomia U Ay, Bymiomie1 = Bypya U By iy
Fomaom’+1 = Jom+1 = Jam’+1

and

(a) For 1 <k<m, Famta2m’+1,k = Fom1,ks ﬂzm+2m’+1,k = ﬂzm+1,k and {u, v}
is an edge of Gypypm iy iff {u, v} is an edge of G, or =0y, ,, v€A
or %= foniii V€ Bypmriys

’

(b)Form + 1<k =m~+m’, aypriomis i = %om's160 Bamrom'+1k = Boam’+ 1.1
and {u,v} is an edge of Gypypmyys iff {u, v} is an edge of Gy, or u =
= Oy 41,00 VE Byppyy O u = ﬂzm’ﬂ,k, vE€EAy, .

am’+1

It is straightforward to verify that this decomposition. of Komiom 11
does satisfy (i)— (v). Thus, since we can choose m’ = 3 then we see that if
K3m+, has a special decomposition then so does K, ,. Since K,, K, and Ky
have special decompositions then K,,,., also has, for all m > 3. This shows
in particular that each K,n,,;, m > 8, can be partitioned into m admissible
subgraphs and therefore P(K,,,,) < 2m, m > 3.

We can combine all the preceding results to give

THEOREM 3.
n—1 for n==35

n otherwise.

fin) = P(K,) = [

IV. Upper bounds for g(n)

In contrast to the sharp results we have for f(n), the corresponding bounds
known for g(n) are much less precise. The current best upper bound on g(n),

namely, g(n) << 32"', is obtained in the following way.

Partition the vertices of K,pm.x 0 < k < 3, into 4 subsets S, with
[(Sil=m+1, 1 <i<k and |8;|=m, k< i<4. Label all the edges
of Kymix in the following order:

(i) First the edges in 8, S,, S; and 8,;
(ii) Next, the edges between S, and S,, then those between S; and S,;
(i) Next, the edges between S, and S;, then those between S, and S,;
(iv) Finally, the edges between S8, and S,, and last, those between S,
and S,.

10*
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It is easily seen that no simple increasing path can contain vertices in
all four of the S;. Thus,

PRy <3m +k 1, 0<k

I

3,
and

g(n) = P(K,) < i—"‘

as asserted.
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