COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI

10. INFINITE AND FINITE SETS, KESZTHELY (HUNGARY), 1973.

ON PARTITION THEOREMS FOR FINITE GRAPHS

P. ERDŐS — R.L. GRAHAM

1. INTRODUCTION

For a given finite graph G and positive integer k, let r(G;k) denote the least integer r such that if the edges of K_r , the complete graph on r vertices, are arbitrarily partitioned into k classes then some class contains a subgraph isomorphic to G. The existence of r(G;k) follows at once from the well-known theorem of Ramsey [8] which asserts that $r(K_n;k) < \infty$ for all n and k. In this paper we investigate the behavior of r(G;k) for large k as G ranges over various classes of graphs.

We shall usually refer to the k classes as "colors" and the copy of G in a single class as "monochromatic". Also, the notation G(m, n) denotes a graph on m vertices and n edges.

2. TREES

Let T_n denote a tree on n edges.

Theorem 1.

(1)
$$r(T_n; k) > (n-1)k+1$$
, $n \ge 1$, for k large and $\equiv 1 \pmod{n}$;
(1) (ii) $r(T_n; k) \le 2kn+1$, $n \ge 1$, $k \ge 1$.

Proof. To prove (i), we use the result of Ray-Chaudhuri and Wilson [9] which guarantees the existence of a resolvable balanced incomplete block design $D_{k,n}$ having (n-1)k+1 points and $\frac{k(kn-k+1)}{n}$ blocks of size n provided only that k is sufficiently large and $\equiv 1 \pmod{n}$. Identify the points $D_{k,n}$ with vertices of $K_{(n-1)k+1}$. Assign the color i to all edges of $K_{(n-1)k+1}$ which correspond to a pair of points occurring in the i-th parallel class of $D_{k,n}$. This is a k-coloring of $K_{(n-1)k+1}$ which contains no monochromatic connected subgraph on n+1 vertices and, hence, (i) follows.

To prove (ii), we apply the elementary fact that for all T_n ,

$$(2) T_n \subseteq G(m, mn) .$$

In any k-coloring of K_{2kn+1} , at least $\frac{1}{k} \binom{2kn+1}{2}$ edges must have the same color. Thus, we have a monochromatic G(2kn+1, n(2kn+1)) which by (2) contains a copy of T_n .

If the conjecture

(3)
$$T_n \subseteq G\left(m, \left[\frac{1}{2}(n-1)m\right] + 1\right)$$

of Erdős and V.T. Sós [4] were known to hold, (1) could be replaced by

(1')
$$r(T_n; k) < kn + O(1)$$

which may be asymptotically correct.

3. FORESTS

Let F_n denote a forest (i.e., an acyclic graph) with n edges and no isolated vertices. Let $u(F_n)$ denote the cardinality of a minimum set of vertices whose removal completely disconnects F_n .

Lemma 1.

(4)
$$r(F_n; k) > \left[\frac{k+1}{2}\right] (u-1), \quad k \ge 1, \quad u \ge 1.$$

Proof. Let t denote $\left[\frac{k+1}{2}\right]$. Consider $K_{t(u-1)}$ as a K_t with K_{u-1} 's for "vertices". Label these copies of K_{u-1} by $1, 2, \ldots, t$. Assign the color i to all edges between vertices i and j for $1 \le i < j \le t$. Assign the color t-1+i to all edges within the "vertex" K_{u-1} labeled i. This is a (2t-1)-coloring of $K_{t(u-1)}$ which contains no monochromatic copy of F_n (by the definition of $u(F_n)$). Since $2t-1 \le k$ then (4) holds.

Note that if F_n has a component with n' edges then it is easy to show (similar to (1)) that

(5)
$$r(F_n; k) > (k-1) \left[\frac{n'}{2} \right].$$

However, any F_n either has a component with \sqrt{n} edges or satisfies $u(F_n) \ge \sqrt{n}$. Thus, (4) and (5) can be combined to give

Theorem 2.

(6)
$$r(F_n; k) > \frac{k(\sqrt{n-1})}{2}, \quad k \ge 1, \quad n \ge 1.$$

On the other hand, there exist for all n examples of F_n for which $r(F_n; k)$ is bounded above by $ck\sqrt{n}$. To see this, we first require a lemma.

Let S_n denote a tree consisting of one vertex of degree n and n vertices of degree 1. Let mS_n denote the disjoint union of m S_n 's.

Lemma 2.

(7)
$$mS_n \subseteq G(t+m-1,e)$$

for
$$e > {m-1 \choose 2} + ({n-1 \over 2} + m - 1)t$$
, $t \ge m(n+1)^2$, $m \ge 1$, $n \ge 1$.

Proof. We proceed by induction on m. For m = 1, the lemma simply asserts that G(t, e) has a vertex of degree $\ge n$ if $e > \left(\frac{n-1}{2}\right)t$ and this is certainly true. Assume, for some m > 1, the lemma holds for $1, \ldots, m-1$.

- (i) Suppose G = G(t + m 1, e) has at least m vertices v_1, \ldots, v_m , each with degree $\geq m(n + 1)$. Then for each $k, 1 \leq k \leq m$, a copy of S_n centered at v_k may be removed from G and thus, $mS_n \subseteq G$ in this case.
- (ii) Suppose for some p, $0 \le p < m$, G has exactly p vertices with degree $\ge m(n+1)$, say v_1, \ldots, v_p . Let G' denote the subgraph of G induced by the remaining t+m-1-p vertices. There are two possibilities.
- (a) All vertices of G' have degree $\leq n-1$. Thus G' has at most $(t+m-1-p)(\frac{n-1}{2})$ edges and so G has at most

$$\binom{p}{2} + \left(p + \frac{n-1}{2}\right)(t+m-1-p)$$

edges. But for $p \le m-1$ this quantity does not exceed

$$\binom{m-1}{2} + \left(m-1 + \frac{n-1}{2}\right)t$$

which contradicts the hypotheses on e.

(b) Some vertex ν in G' has degree $\geq n$ in G'. We may delete a copy of S_n centered at ν from G', causing a net loss of at most $m(n+1)^2$ edges in G'. Replacing the vertices ν_1, \ldots, ν_p we have left a graph $G_1 = G_1(t+m-1-n-1, e_1) \subseteq G$ where

$$\begin{split} e_1 &> \binom{m-1}{2} + \left(\frac{n-1}{2} + m - 1\right)t - m(n+1)^2 - p(n+1) \geq \\ &\geq \binom{m-2}{2} + \left(\frac{n-1}{2} + m - 2\right)(t-n) \end{split}$$

and

$$t-n+m-2 \ge (m-1)(n+1)^2$$

for $t \ge m(n+1)^2$. Hence, by the induction hypothesis, $(m-1)S_n \subseteq G_1$ and so $mS_n \subseteq G$. This completes the proof of (7).

Theorem 3.

(8)
$$r(nS_n; k) \le 3kn, \quad n \ge 1, \quad k \ge 3n^2$$
.

Proof. Let t=3kn. Any k-coloring of K_t contains a monochromatic subgraph G(t,e) where $e \ge \frac{1}{k} \binom{t}{2}$. By Lemma 2, $nS_n \subseteq G(t,e)$ provided

$$e > {n-1 \choose 2} + {n-1 \choose 2} + n-1 (t-n+1)$$

and

$$t-n+1 \ge n(n+1)^2$$

But these conditions are certainly satisfied for t = 3kn, $k \ge 3n^2$, $n \ge 1$.

Thus, if n is a square and $k \ge 3n$ then

$$(9) r(\sqrt[4]{n} S_{\sqrt{n}}; k) \leq 3k\sqrt{n} .$$

The following example shows that the bound on e in Lemma 2 is best possible when n is odd. Let H be a regular graph on t vertices of degree n-1. Form the graph $G=G\left(t+m-1,\binom{m-1}{2}+\left(\frac{n-1}{2}+m-1\right)t\right)$ by adjoining a copy of K_{m-1} and joining each vertex of K_{m-1} to each vertex of H. Clearly $mS_n \not\subseteq G$.

For k relatively small compared to n, the situation is somewhat different.

Theorem 4.

(10)
$$r(F_n; k) > c_1 \sqrt{k}n, \quad 1 \le k \le n^2$$

for some positive constant c_1 (independent of k and n).

Proof. From a finite projective plane PP(r) of order r, we construct a covering of K_{r^2+r+1} by r^2+r+1 copies of K_{r+1} as follows. The vertices of K_{r^2+r+1} are the points of PP(r). The vertices of the K_{r+1} 's are just the sets of r+1 points which lie on each of the r^2+r+1 lines of PP(r). The edges of the K_{r+1} 's cover the edges of K_{r^2+r+1} by the properties of PP(r). Now, replace each point of PP(r) by a copy of K_t where $t=\lceil n/\sqrt{k} \rceil$, keeping in mind the restriction $k \le n^2$. This gives a covering of $K_{(r^2+r+1)t}$ by r^2+r+1 copies of $K_{(r+1)t}$. By choosing r+1 to be the greatest prime power k=1 (which guarantees the existence of k=1) and using the fact that k=10, we have covered k=11 by k=12. Hence, assigning different colors to the edges of the different k=12, no monochromatic copy of k=13. Hence, assigning different colors to the edges of the different k=12, no monochromatic copy of k=13.

On the other hand, it follows from (7) that for a suitable universal constant c_2 ,

$$(11) r(\sqrt{n} S_{\sqrt{n}}) < c_2 \sqrt{k} n, 1 \le k \le n,$$

when n is a square. Thus, for both (6) and (10), the upper bound on $r(\sqrt{n} S_{\sqrt{n}}; k)$ comes to within a constant factor of the general lower bound.

4. EVEN CYCLES

As might be expected, the more highly structured a graph G is, the more difficult it is to obtain accurate bounds on r(G;k). Still, even the rough bounds we derive for cycles C_m on m vertices point out the striking difference in the behavior of $r(C_m;k)$ for even and odd m. We first consider the case m even.

Theorem 5.

(12)
$$r(C_{2n}; k) > c_3 k^{1 + \frac{1}{2n}}, \quad k \ge 1, \quad n \ge 1,$$

where $c_3 = c_3(n)$.

Proof. Set $\epsilon = \frac{1}{2n+1}$. For a large h, $h^{1-\epsilon}$ -color the edges of K_h uniformly at random. Since there are $(h^{1-\epsilon})^{\binom{h}{2}}$ ways to color K_h and there are $< h^{2n}C_{2n}$'s in K_h then the total number of monochromatic C_{2n} 's in all colorings is $\leq h^{2n}h^{1-\epsilon}(h^{1-\epsilon})^{\binom{h}{2}-2n}$. Thus, the expected number of monochromatic C_{2n} 's is no more than

$$\frac{h^{2n}(h^{1-\epsilon})^{\binom{h}{2}-2n+1}}{(h^{1-\epsilon})^{\binom{h}{2}}}=h^{1+\epsilon(2n-1)}.$$

This implies there exists an $h^{1-\epsilon}$ -coloring of K_h in which there are $\leq h^{1+\epsilon(2n-1)}$ monochromatic C_{2n} 's formed. Form a graph G=G(h,e)with $e \le h^{1+\epsilon(2n-1)}$ by removing one edge from each of these monochromatic C_{2n} 's. By a theorem of Nash-Williams [7], G may be decomposed into no more than $\sqrt{e/2} + 1/2$ acyclic subgraphs. If we assign a new color to each of these subgraphs then we have shown the existence of an $(h^{1-\epsilon} + ch^{\frac{1}{2}(1+\epsilon(2n-1))})$ -coloring of K_h which contains no monochromatic C_{2n} . Replacing ϵ by $\frac{1}{2n+1}$ and letting k= $= (1+c)h^{\frac{2n}{2n+1}}$ we see that for a suitable * $c_3 = c_3(n)$,

$$r(C_{2n}; k) > c_3 k^{1 + \frac{1}{2n}}, \quad k \ge 1, \quad n \ge 1,$$

and (12) is proved.

In the other direction we have the following result.

^{*}Since we must have $h \ge h(n)$ for the preceding arguments to be valid.

Theorem 6. For all $\epsilon > 0$, $n \ge 2$, there exists $c_4 = c_4(\epsilon, n)$ such that

(13)
$$r(C_{2n}; k) < c_4 k^{1 + \frac{1+\epsilon}{n-1}}, \quad k \ge 1.$$

Proof. Choose c>0 and for a large k (to be determined later) let $K_{ck^{1+\epsilon}}$ be arbitrarily k-colored. Hence, $K_{ck^{1+\epsilon}}$ must contain a monochromatic subgraph $G=G(ck^{1+\epsilon},e)$ where $e\geqslant \frac{1}{3}\,c^2k^{1+2\epsilon}$.

By a recent result of Bondy and Simonovits [2], G contains a copy of C_{2n} provided the following two inequalities hold:

$$(i) n \leq \frac{e}{100 \, ck^{1+\epsilon}},$$

(ii)
$$n(ck^{1+\epsilon})^{1/n} \le \frac{e}{10ck^{1+\epsilon}}$$
.

However, it is easily checked that for any $\delta > 0$, if ϵ is taken to be $\frac{1+\delta}{n-1}$ then for sufficiently large c and k, (i) and (ii) both hold. Thus, for suitable $c_4 = c_4(\delta, n)$,

$$r(C_{2n}; k) < c_4 k^{1 + \frac{1+\delta}{n-1}}, \quad k \ge 1$$

and (13) is proved.

Of course, since C_{2n} contains a subtree on 2n-1 edges then by (5)

(14)
$$r(C_{2n}; k) > (k-1)(n-1), \quad k \ge 1, \quad n \ge 1.$$

It is interesting to note that initially for k, $r(C_{2n}; k)$ is bounded above by ckn.

In particular, the argument of Theorem 6 can be suitably modified to establish

(15)
$$r(C_{2n}; k) \le 201 \, kn$$
, $1 \le k \le \frac{10^n}{201 \, n}$, $n > 1$.

It has recently been shown [3] for C_A that

$$r(C_4;k) \le k^2 + k + 1 \quad \text{for all } k ,$$

$$r(C_4;k) > k^2 - k + 1 \quad \text{for } k = \text{prime power.}$$

Hajnal and Szemerédi had previously shown (unpublished) that

$$r(C_4; k) > ck^2$$
 for some $c > 0$.

5. ODD CYCLES

Theorem 7.

(16)
$$2^k n < r(C_{2n+1}; k) < 2(k+2)!n, \quad k \ge 1, \quad n \ge 1.$$

Proof. The lower bound follows easily by induction on k. For k=1, $C_{2n+1} \not\subseteq K_{2n}$. If there exists a k-coloring of K_{2k_n} with no monochromatic C_{2n+1} then by joining two such copies of K_{2k_n} by edges of color k+1 we have a (k+1)-coloring of K_{2k+1_n} with no monochromatic C_{2n+1} .

We now prove the upper bound. Let $t_0=2(k+2)!n$ and suppose K_{t_0} is arbitrarily k-colored. Then for some color, say color c_1 , some vertex v_1 has at least $t_1\geqslant \frac{t_0-1}{k}$ edges of color c_1 leaving it. Let G_1 be the complete subgraph spanned by the t_1 vertices connected to v_1 by these edges of color c_1 . If G_1 contained a subset of m vertices which spanned a subgraph G_1' containing $\geqslant mn$ edges of color c_1 , then by a theorem of Erdős and Gallai [5] G_1' would contain a path P_{2n-1} of 2n-1 edges of color c_1 . This, together with the two edges of color c_1 to v_1 , would form a monochromatic C_{2n+1} . Hence we may assume all subsets of m vertices of G_1 span < mn edges of color c_1 . Thus, some vertex v_2 in G_1 has $\leqslant 2n-1$ edges in G_1 of color c_1 . Therefore, for some new color $c_2 \ne c_1$, v_2 has a least

$$t_2 \geqslant \frac{t_1 - 1 - (2n - 1)}{k - 1}$$

edges of color c_2 , etc.

Continuing this argument recursively, we find that some monochromatic C_{2n+1} must occur provided $t_k \ge 1 + 2kn$. A brief calculation shows that for $t_0 \ge 2(k+2)!n$, this is indeed the case and so (16) is established.

Another upper bound on $r(C_{2n+1}; k)$ which is probably better than that in (16) is given by the following result.

Theorem 8. For a suitable constant c,

$$r(C_{2n+1}; k) < ck^3 nr^2(C_3; k)$$
, $n \ge 1$.

Proof. Let m_3 denote $r(C_3;k)$ and let s denote $3km_3$. From the definition of m_3 it follows that for some $c_1 > 0$, any k-colored K_s contains at least c_1km_3 monochromatic C_3 's. Hence for t large, if K_t is k-colored then each choice of s vertices of K_t spans at least c_1km_3 monochromatic C_3 's. If we sum this over all $\binom{t}{s}$ choices of s vertices in K_t , we see that each monochromatic C_3 has been counted at most $\binom{t-3}{s-3}$ times. Hence, there are at least

$$\frac{c_1 k m_3 \binom{t}{s}}{\binom{t-3}{s-3}}$$

monochromatic C_3 's in K_t and so at least

$$\frac{c_1 m_3 \binom{t}{s}}{\binom{t-3}{s-3}} > \frac{c_2 m_3 t^3}{s^3}$$

monochromatic C_3 's all having the same color, say, color c'. For $t=ck^3nm_3^2$ this number is at least c_3nt^2 . Thus, some vertex v in K_t has at least c_4nt of the edges of these triangles incident to it. The corresponding vertices of these edges span a graph G which contains all the third edges of the triangles, i.e., at least $\frac{1}{2}c_4nt$ edges of color c'. By

the previously mentioned theorem of Erdős and Gallai, if $\frac{1}{2}c_4 \ge 1$ then G must contain a path P_{2n-1} consisting of 2n-1 edges of color c'. This, together with v now forms a monochromatic C_{2n+1} . By choosing c sufficiently large, we can force $c_4 \ge 2$ and the argument is complete.

It is probably true that

$$\lim_{k \to \infty} \frac{r(C_{2n+1}; k)}{r(C_2; k)} = 0 \quad \text{for} \quad n \ge 2,$$

but this is not known at present.

We note here that for the complete bipartite graph $K_{n,n}$, the inclusion

(17)
$$K_{n,n} \subseteq G(m, c_1 m^{2-1/n})$$

due to Kővári, Sós and Turán [6] implies that $r(K_{n,n};k) < (c_2k)^n$ for suitable constants $c_i > 0$. The determination of $r(K_n;k)$ is a well-known classical problem. It is known [1] that

$$e^{c_1kn} < r(K_n; k) < k^{c_2kn}$$

for suitable constants $c_i > 0$.

6. CONCLUDING REMARKS

A number of questions remain open, several of which we mention here.

(i) Is it true for trees T_n that

$$r(T_n; k) = kn + O(1)?$$

As mentioned before, this would follow from the conjecture

$$T_n \subseteq G(m, \left[\frac{1}{2}(n-1)m\right]+1)$$
. $m \ge n+1$.

(ii) It follows from Lemma 1 that if T is a maximum component

of a forest F and u(F), as before, denotes the cardinality of a minimum set of vertices whose removal completely disconnects F, then

$$r(F;k) > \max\left\{ \left[\frac{k+1}{2} \right] (u-1), \ r(T;k) \right\}.$$

Is this essentially the correct behavior of r(F; k)?

- (iii) It is known that K_{2^n} can be decomposed into n bipartite graphs while $K_{2^{n}+1}$ can not be so decomposed. What is the least odd circuit which must occur in any decomposition of $K_{2^{n}+1}$ into n subgraphs?
- (iv) It follows from what we have proved that for any graph G_n with n edges

$$r(G_n; k) > ck\sqrt{n}$$

for a suitable constant c. Among all such graphs, which have the fastest growing values of $r(G_n; k)$? For example, is it true that

$$r(K_n; k) \ge r(G_{\binom{n}{2}}; k)$$
, $k \ge 1$, $n \ge 1$,

for any graph $G_{\binom{n}{2}}$ with $\binom{n}{2}$ edges?

(v) Is it true that

$$\lim_{k\to\infty}\frac{r(C_{2n+1};k)}{r(C_3;k)}\to 0\quad\text{for}\quad n\geqslant 2\;.$$

It is not even known at present that

$$\frac{\log r(C_{2n+1};k)}{k} = O(1), \qquad n \geqslant 2.$$

Trivially,

$$r(K_n; k) < k^{kn}$$

but perhaps

$$r(K_n; k) < c_n^k .$$

It would be of interest to investigate r(G; k) when both |G| and k tend to infinity, but we do not do this here.

REFERENCES

- [1] H.L. Abbott, A note on Ramsey's Theorem, Canad. Math. Bull., 15 (1972), 9-10.
- [2] J.A. Bondy M. Simonovits, Cycles of even length in graphs, Res. Rep CORR 73-2, Dept. of Comb. and Opt., Univ. of Waterloo, Feb. (1973).
- [3] Fan Chung R.L. Graham, On multicolor Ramsey numbers for complete bipartite graphs, (to appear).
- [4] P. Erdős, Extremal problems in graph theory, *Theory of graphs and its applications, Proc. Sympos. Smolenice*, Publ. Czechoslovak Acad., Prague, (1964), 29-36.
- [5] P. Erdős T. Gallai, On maximal paths and circuits in graphs, Acta Math. Hung. Acad. Sci., 10 (1959), 337-356.
- [6] T. Kővári V.T. Sós P. Turán, On a problem of Zarankiewicz, Colloq. Math., 3 (1959), 50-57.
- [7] C.St.J.A. Nash-Williams, Decomposition of finite graphs into forests, J. London Math. Soc., 39 (1964), 12.
- [8] F.P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., (2) 30 (1930), 264-286.
- [9] D.K. Ray-Chaudhuri R.M. Wilson, The existence of resolvable block designs, A Survey of Comb. Theory, (J. N. Srivastava, et al., ed.) (1973), 361-376.