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ON PARTITION THEOREMS FOR FINITE GRAPHS
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1. INTRODUCTION

For a given finite graph G and positive integer k, let A(G; k) de-
note the least integer r such that if the edges of K, the complete graph
on r vertices, are arbitrarily partitioned into k& classes then some class
contains a subgraph isomorphic to G. The existence of nG; k) follows
at once from the well-known theorem of Ramsey [8) which asserts that
NK,;k) <o forall n and k. In this paper we investigate the behavior
of HG; k) forlarge k as G ranges over various classes of graphs.

We shall usually refer to the k classes as colors’ and the copy of
G in a single class as ”monochromatic”. Also, the notation G(m,n) de-
notes a graph on m vertices and n edges.
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2. TREES
Let T, denote a tree on n edges.
Theorem 1.

@ AT,;k>Mm-Dk+1, n>1, for k large and = 1(mod n);
(1
(ii) r(T",'k)<2kn+1, n=1, k=>1.

Proof. To prove (i), we use the result of Ray-Chaudhuri and
Wilson [9] which guarantees the existence of a resolvable balanced incom-

plete block design D, , having (n— 1)k + 1 points and EQ@_:nLC_tD

blocks of size n provided only that k is sufficiently large and =1
(mod n). ldentify the points Dk’n with vertices of K(n_ Dk+1° Assign
the color i to all edges of K(n_ Dk +1 which correspond to a pair of
points occurring in the i-th parallel class of Dk, o Thisisa k-coloring
of K(n_ Dk +1 which contains no monochromatic connected subgraph on
n+ 1 vertices and, hence, (i) follows.

To prove (ii), we apply the elementary fact that for all 7, ,

2) T, € G(m, mn) .

In any k-coloring of K 1 [2kn + 1

2kn+ 1> at least % 5
the same color. Thus, we have a monochromatic G(2kn + 1, n(2kn + 1))
which by (2) contains a copy of T,.

] edges must have

If the conjecture

@  T,SG(m[F;n-Dm]+1)

of Erdds and V.T. Sés [4] were known to hold, (1) could be replaced
by

1" AT, ; k)< kn+ O(1)

which may be asymptotically correct.
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3. FORESTS

Let Fn denote a forest (i.e., an acyclic graph) with »n edges and
no isolated vertices. Let u(Fn) denote the cardinality of a minimum set
of vertices whose removal completely disconnects F, .

Lemma 1.
k+ 1
(4) HE ;0> [F5—]w-1, k=1, u>1.
Proof. Let ¢ denote [X21]. Consider K K, with
roof. Let ¢ denote [ — ). Consider K, _,, asa K, wit
K, _’s for "vertices”. Label these copies of K, |, by 1,2,...,t As

sign the color i to all edges between vertices i and j for 1<i<j<t
Assign the color ¢ — 1+ i to all edges within the "vertex” K, _, labeled
i. Thisisa (2t — 1)-coloring of Kt(u _1 which contains no monochro-
matic copy of F, (by the definition of u(F,)). Since 2t — 1<k then

(4) holds. 1

Note that if F, has a component with n' edges then it is easy to
show (similar to (1)) that

) AEgR> k-1 [5]

, ¢ither has a component with Vn edges or satisfies
u(F)>Vn. Thus, (4) and (5) can be combined to give

However, any F

Theorem 2.

k=1, n=1.

3

6 AF k> KD

On the other hand, there exist for all n examples of F, for which
r(Fn; k) is bounded above by ckVn. To see this, we first require a lem-
ma.

Let S, denote a tree consisting of one vertex of degree n and n
vertices of degree 1. Let mSn denote the disjoint union of m Sn ’s.
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Lemma 2.

@) mS, SG(t+m—1,e)
for e>[m;1]+(n—5~l+m—l)t, t>mn+ D2, m>1, n>1.

Proof. We proceed by induction on m. For m =1, the lemma

simply asserts that G(¢,e) has a vertex of degree >n if e> ( n 5 I )t

and this is certainly true. Assume, for some m > 1, the lemma holds for
I,...,m—1.

(1) Suppose G =G(t+ m—1,¢e) has at least m vertices Viseoo
-»V,,» each with degree > m(n + 1). Then foreach k, 1< k<m, a
copy of S centered at v, may be removed from G and thus, mS, -
S G in this case.

(ii) Suppose for some p, 0<p<m, G has exactly p vertices
with degree > m(n + 1), say Viseos ¥y Let G' denote the subgraph
of G induced by the remaining ¢+ m — 1 — p vertices. There are two
possibilities.

(a) Al vertices of G' have degree < n— 1. Thus G' has at most

(t +m-1—p)(n51) edges and so G has at most

D n—1
[2]+(p+ 5 ](t+m——1—p)
edges. But for p < m — 1 this quantity does not exceed

[m;1]+(m—l+n—l]t

2

which contradicts the hypotheses on e.

(b) Some vertex v in G' hasdegree > n in G'. We may delete
a copy of S, centered at v from G’, causing a net loss of at most
m(n + 1) edges in G'. Replacing the vertices Viseoesb, We have left
a graph G1 =G (t+m—-1-n— l,el)QG where
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el>[m;l]+(ﬂ—g—l+m——l]t—m(n+ 1)2—p(n+ D=

>[”"2]+(";1+m—2](t—n)

and
t—n+m-2=0m-Dn+ 1)?

for ¢t>m(n+ 1)2. Hence, by the induction hypothesis, (m — DS, € G,
and so mS, & G. This completes the proof of (7).

Theorem 3.
(8) nnS,; k)< 3kn, n>1, k>3n*.

Proof. Let 7= 3kn. Any k-coloring of K, contains a monochro-

matic subgraph G(¢, e) where e¢> —IIE[;] By Lemma 2, nS, C G, e)

'

provided

n—1 n—1
e>[ ) ]+( 3 +n-l](t—n+l)

and
t—n+1znn+ 2.
But these conditions are certainly satisfied for ¢ = 3kn, k> 3n%, n> 1.1
Thus, if n is a square and k> 3n then

9) r(l/n—SV—n—; k) < 3kVn .

The following example shows that the bound on e in Lemma 2 is best

possible when n is odd. Let H be a regular graph on ¢ vertices of

n—1
2

+m - l]t) by adjoining a copy of K, , and joining each vertex of

K

m-—1

degree n — 1. Form the graph G=G(f+m—1,[m;1]+( N

to each vertex of H. Clearly mS, € G.

For k relatively small compared to », the situation is somewhat
different.
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Theorem 4.
(10 NF,;k)>c,Vkn, 1<k<n?
for some positive constant ¢, (independent of k and n).

Proof. From a finite projective plane PP(r) of order r, we construct

a covering of K, by r* +r+ 1 copies of K as follows. The
re+r+l r+1

vertices of K 5 are the points of PP(r). The vertices of the K , .’s
re+r+1 r+1

are just the sets of r+ 1 points which lic on each of the 7% + r+ 1

lines of PP(r). The edges of the K, ’s cover the edges of K 2 by
re+r+1

the properties of PP(r). Now, replace each point of PP(r) by a copy of
K, where 1= [n/Vk_], keeping in mind the restriction k < n?. This
gives a covering of K(r2+r+ e by r2 +r+ 1 copies of K(r+ e By
choosing r+ 1 to be the greatest prime power < Yk — 1 (which guaran-
tees the existence of PP(r)) and using the fact that p, l/pm - 1 for
the primes p, , we see that for a suitable constant ¢, > 0, we have cov-
ered Kclﬁn by <k copies of K,. Hence, assigning different colors

to the edges of the different K, ’s, no monochromatic copy of F , has
been formed and (10) follows. §

On the other hand, it follows from (7) that for a suitable universal
constant ¢y,

an Ay <efkn,  1<k<n,

when n is a square. Thus, for both (6) and (10), the upper bound on
r( VﬁSV-"—; k) comes to within a constant factor of the general lower bound.

4. EVEN CYCLES

As might be expected, the more highly structured a graph G is, the
more difficult it is to obtain accurate bounds on (G k). Still, even the
rough bounds we derive for cycles ¢, on m vertices point out the
striking difference in the behavior of nC,,; k) for even and odd m. We
first consider the case m even.
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Theorem 5.

1
1 ——
12 AC, K>k M k>1, n>1,
where €3 = c3(n).

Proof. Set €= -

s . P 1-—e_
57T ] For a large h, h color the edges of

h
Kh uniformly at random. Since there are (h- G)(z) ways to color Kh

and there are < 42" Cy sin K , then the total number of monochromatic

h
—2n
C,,’s in all colorings is < h?"h!~<(h! ~e)(2) . Thus, the expected
number of monochromatic C2n ’s is no more than

h
h2n(hl—e)( 2] —2n+1

— h1+e(2n— 1) .
2)
(hl~e)(2

This implies there exists an /!~ ¢-coloring of K, in which there are
< h1*+€@n-1 monochromatic C,,’s formed. Form a graph G = G(h, €)
with e < 1 *t€2n-1D py removing one edge from each of these mono-
chromatic C,,’s. By a theorem of Nash-Williams [7], G may be
decomposed into no more than Ve/2 + 1/2 acyclic subgraphs. If we assign
a new color to each of these subgraphs then we have shown the existence

1
S+ e(2n-1)) : : .
ofan (h1=¢+ch? 7" ")coloring of K, which contains no

. . ] : B

monochromaztlc C,,- Replacing € by S and letting k=
" -

= (14 c)h2"+! we see that for a suitable * c; = c;(n),

1
HCo  K)> ek 72 k>1, n>1
2"7 3 b b} b}

and (12) is proved. 11

In the other direction we have the following result.

*Since we must have # > h(n) for the preceding arguments to be valid.
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Theorem 6. Forall e > 0, n> 2, there exists ¢y = c4(€, n) such
that

l+1+e
(13) HCys k) <ck "1, k>1.

Proof. Choose ¢> 0 and for a large k (to be determined later)

let K 1+, De arbitrarily k-colored. Hence, K must contain a
ck € ck

1+e
monochromatic subgraph G = G(ck!*¢ e) where e> % c2l+2e,

By a recent result of Bondy and Simonovits [2], G contains
a copy of C,, provided the following two inequalities hold:

. €

@ "< T00ckTFe

4 kl+€ lln < e -
(ii) n(c ) T0ckl™e

However, it is easily checked that for any & > 0, if € is taken to be

'll—t—? then for sufficiently large ¢ and k, (i) and (ii) both hold. Thus,
for suitable ¢y = c4(6, n),

1+6

1
HCy; k) <cgk "1, k>
and (13) is proved. I

Of course, since C,, contains a subtree on 2n — 1 edges then by

(3)
(14) r(Czn,'k)>(k—1)(n—l), k=1, nz=1l.

It is interesting to note that initially for k, rC,,; k) is bounded
above by ckn.

In particular, the argument of Theorem 6 can be suitably modified
to establish

(15)  AHC,;k)<201kn, 1<k<sor
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It has recently been shown [3] for C, that
NC; k)<k®+k+1 forall k,
rnCy; k) > k2 —k+1 for k= prime power.
Hajnal and Szemerédi had previously shown (unpublished) that

HC,; k) > ck? forsome ¢>0.

5. ODD CYCLES
Theorem 7.
(16) Xn<nC,,, ;K<2k+Dn, k=1, n>1.

Proof. The lower bound follows easily by induction on k. For

k=1, C,), 1, Y4 K,,- If there exists a k-coloring of szn with no mo-

nochromatic C,, + then by joining two such copies of sz by edges
n
of color k+ 1 we have a (k + 1)-coloring of K with no mono-

chromatic C

2k+ln
2n+1"

We now prove the upper bound. Let ty = 2(k + 2)!n and suppose
K’o is arbitrarily k-colored. Then for some color, say color ¢,, some
vertex v, has at least t, > io—k—l edges of color ¢, leaving it. Let
G, be the complete subgraph spanned by the t, vertices connected to
v, Dby these edges of color ¢,- If G, contained asubset of m vertices
which spanned a subgraph G’1 containing > mn edges of color ¢,, then
by a theorem of Erdés and Gallai [5] G’1 would contain a path
P,,_, of 2n—1 edges of color ¢, - This, together with the two edges
of color ¢, to v, would form a monochromatic C,, 4+ - Hence we
may assume all subsets of m vertices of G, span <mn edges of color
;- Thus, some vertex v, in G1 has < 2n — 1 edgesin G1 of color
- Therefore, for some new color Cy #FCys Yy has a least

th-1-Cn-1)
t, = -
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edges of color ¢,. etc.

Continuing this argument recursively, we find that some monochro-
matic C,,,, must occur provided ¢, =1+ 2kn. A brief calculation
shows that for ty > 2(k + 2)'n, this is indeed the case and so (16) is
established. d

Another upper bound on #(C,, , ,;k) which is probably better than
that in (16) is given by the following result.

Theorem 8. For a suitable constant c,

r(C2n+l;k)<ck3m'2(C3;k), n=1.

Proof. Let m, denote r(Cy; k) and let s denote 3km,. From
the definition of i, it follows that for some ¢, >0, any k-colored
K, contains at least ¢ ki, monochromatic C3’s. Hence for ¢ large, if

K, is k-colored then each choice of s vertices of K, spans at least

. . t .
clkm3 monochromatic C3 ’s. If we sum this over all [s] choices of s
vertices in K (s We see that each monochromatic C3 has been counted

t-3 .
at most [s 3] times. Hence, there are at least

t
C_lkm3[s]

i3]

monochromatic C, ’sin K, and so at least

t
c1m3[s] c2m3t3
r— 3]' Z
s—3

monochromatic C,’s all having the same color, say, color ¢'. For t=
= ck3 nm% this number is at least c3nt2. Thus, some vertex v in Kt
has at least c,nt of the edges of these triangles incident to it. The corre-
sponding vertices of these edges span a graph G which contains all the

third edges of the triangles, i.e., at least % cynt edges of color ¢'. By
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the previously mentioned theorem of Erd&6s and Gallai, if %6‘4 =1

then G must contain a path P, | consisting of 2n -1 edges
of color ¢'. This, together with v now forms a monochromatic C2n+ 1
By choosing ¢ sufficiently large, we can force ¢, = 2 and the argument
is complete.

It is probably true that

NCapyyi b

Jim Sy =0 for m

\Y%
(&}

but this is not known at present.

We note here that for the complete bipartite graph K,  , the inclu-
sion

a7n K, ,SGom,cm?-1n)

due to KS6vari, So6s and Turédn [6] implies that HK, ,; k) <(c,k)"

n,n’
for suitable constants ¢, > 0. The determination of KK, ;k) is a well-

known classical problem. It is known [1] that

e"lk" Cokn

<r(Kn;k)<k

for suitable constants c; > 0.

6. CONCLUDING REMARKS

A number of questions remain open, several of which we meation
here.

(1) Is it true for trees T, that
r(Tn;k) = kn + O(1)?
As mentioned before, this would follow from the conjecture

TnQG[m, [-%(n—l)m]+1). m>=n+1.

(ii) It follows from Lemma 1 that if T is a maximum component
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of a forest F' and u(F), as before, denotes the cardinality of a mini-
mum set of vertices whose removal completely disconnects F. then

H(F; k) > max { (5 @ -, nr k)} .
Is this essentially the correct behavior of H(F 2 k)?

(iii) It is known that Kzn can be decomposed into n bipartite
graphs while K2"+1 can not be so decomposed. What is the least odd
circuit which must occur in any decomposition of X ey into n sub-

+

graphs?

(iv) It follows from what we have proved that for any graph G,
with n edges

nG,; k) > ckVn

for a suitable constant c¢. Among all such graphs, which have the fastest
growing values of r(Gn; k)? For example, is it true that

(5)

with [;] edges?

HK,; k)= rHG s K) k=1, n=1,

for any graph G "
(3)

(v) Is it true that

"Cyny 150
i ——- fi > 2.
am Cy Ry 0 foron
It is not even known at present that
log {C s k)
2 —01), n>2.

Trivially,
nK,; k) < kkn

but perhaps
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nK,; k) <ck.

It would be of interest to investigate r(G; k) when both | G| and

k tend to infinity, but we do not do this here,
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