A SHORT PROOF OF VAN DER WAERDEN'S THEOREM ON ARITHMETIC PROGRESSIONS

R. L. GRAHAM AND B. L. ROTHSCHILD

ABSTRACT. A short proof is given for the classical theorem of van der Waerden which asserts that for any partition of the integers into a finite number of classes, some class contains arbitrarily long arithmetic progressions.

Let [a, b] denote the set of integers x with $a \le x \le b$. We call (x_1, \dots, x_m) , $(x'_1, \dots, x'_m) \in [0, l]^m$ *l-equivalent* if they agree up through their last occurrences of l. For any l, $m \ge 1$, consider the statement

For any r, there exists N(l, m, r) so that for any function $C: [1, N(l, m, r)] \rightarrow [1, r]$, there exist positive a, d_1, \dots, d_m such that $C(a + \sum_{i=1}^m x_i d_i)$ is constant on each l-equivalence class of $[0, l]^m$.

FACT 1. S(l, m) for some $m \ge 1 \Rightarrow S(l, m+1)$.

PROOF. For a fixed r, let M=N(l,m,r), $M'=N(l,1,r^M)$ and suppose $C:[1,MM']\rightarrow [1,r]$ is given. Define $C':[1,M']\rightarrow [1,r^M]$ so that C'(k)=C'(k') iff C(kM-j)=C(k'M-j) for all $0\leq j< M$. By the inductive hypothesis, there exist a' and a' such that C'(a'+xa') is constant for $x\in [0,l-1]$. Since S(l,m) can apply to the interval [a'M+1,(a'+1)M], then by the choice of M, there exist a, d_1,\cdots,d_m with all sums $a+\sum_{i=1}^m x_id_i$, $x_i\in [0,l]$, in [a'M+1,(a'+1)M] and with $C(a+\sum_{i=1}^m x_id_i)$ constant on l-equivalence classes. Set $d'_i=d_i$ for $i\in [1,m]$ and $d'_{m+1}=d'M$; then S(l,m+1) holds.

FACT 2. S(l, m) for all $m \ge 1 \Rightarrow S(l+1, 1)$.

PROOF. For a fixed r, let $C:[1,2N(l,r,r)] \rightarrow [1,r]$ be given. Then there exist a,d_1,\cdots,d_r such that for $x_i \in [0,l]$, $a+\sum_{i=1}^r x_i d_i \leq N(l,r,r)$ and $C(a+\sum_{i=1}^r x_i d_i)$ is constant on l-equivalence classes. By the box principle there exist u < v in [0,r] such that

$$C\left(a + \sum_{i=1}^{u} ld_{i}\right) = C\left(a + \sum_{i=1}^{v} ld_{i}\right).$$

Received by the editors February 1, 1973.

AMS (MOS) subject classifications (1970). Primary 05A99; Secondary 10L99. Key words and phrases. van der Waerden's theorem, long arithmetic progressions.

Therefore $C((a+\sum_{i=1}^{u}ld_i)+x(\sum_{i=u+1}^{v}d_i))$ is constant for $x \in [0, l]$. This proves S(l+1, 1).

Since S(1, 1) holds trivially, then by induction S(l, m) is valid for all $l, m \ge 1$. Van der Waerden's theorem is S(l, 1).

The authors point out that while previous proofs follow essentially the argument above, the one given is hopefully clearer.

REFERENCES

- 1. R. L. Graham and B. L. Rothschild, Ramsey's theorem for n-parameter sets, Trans. Amer. Math. Soc. 159 (1971), 257-292. MR 44 #1580.
- 2. A. W. Hales and R. I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222-229. MR 26 #1265.
- 3. A. Ja. Hinčin, Three pearls of number theory, Graylock Press, Rochester, N.Y., 1952. MR 13, 724.
 - 4. R. Rado, Studien zur Kombinatorik, Math. Z. 36 (1933), 424-480.
- 5. B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk. 15 (1927), 212-216.

BELL LABORATORIES, MURRAY HILL, NEW JERSEY 07974

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024