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A SHORT PROOF OF VAN DER WAERDEN’S THEOREM
ON ARITHMETIC PROGRESSIONS

R. L. GRAHAM AND B. L. ROTHSCHILD

ABSTRACT. A short proof is given for the classical theorem
of van der Waerden which asserts that for any partition of the
integers into a finite number of classes, some class contains
arbitrarily long arithmetic progressions.

Let [a, b] denote the set of integers x with aSx=<b. We call (x,, - - -, x,,),
(x1,° -, Xxm) € [0, I]™ l-equivalent if they agree up through their last
occurrences of /. For any /, mz1, consider the statement

For any r, there exists N(/, m, r) so that for any function

) C:{1, N, m,r)]—[1, r], there exist positive a,d,,* -+ ,d,
such that C(a+ 7%, x,d,) is constant on each l-equivalence
class of [0, []™.

Fact 1. S(l, m) for some m=1=-S(I,m+1).

Proor. For a fixed r, let M=N(, m,r), M'=N(, 1, r*™) and suppose
C:[1, MM'}—[1, r] is given. Define C’:[1, M'}—[1, r™] so that C’'(k)=
C'(k') iff C(kM~j)=C(k'M—j) for all 0= j<M. By the inductive hy-
pothesis, there exist a’ and d’ such that C’(a’+xd") is constant for x €
[0,/—1]. Since S(/, m) can apply to the interval [a’M+1, (a'+1)M],
then by the choice of M, there exist a, dy, - -, d, with all sums a+
Shixd;, x;€[0,1], in [@M+1, (@+1)M] and with C(a+ >, x.d,)
constant on /-equivalence classes. Set d;=d; fori € [1, m]and d,..,=d'M;
then S(/, m+1) holds.

FAC'l_' 2. S(, m) for all m=1=-5(+1, 1).

Proor. For a fixed r, let C:[1,2N(, r,r)}—[1,r] be given. Then
there exist a, dy, - - - , d, such that for x, € [0, 1], a+ >, x,d,SN(,r,r)
and C(a+ 2., x.d;) is constant on l-equivalence classes. By the box prin-
ciple there exist u<wv in [0, r] such that

C(a + i ldl.) = C(a +Zldi).

i=1

S{,m
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Therefore C((a+ 27y Md)+x(27-us1d;)) is constant for x € [0, /]. This
proves S(/+1, 1).

Since S(1, 1) holds trivially, then by induction S(/, m) is valid for all
I, m=1. Van der Waerden’s theorem is S(/, 1).

The authors point out that while previous proofs follow essentially the
argument above, the one given is hopefully clearer.
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