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Therefore it follows from (15) and (16) that {h,,(x)}T and {hy,_,(x)}7 are mono-
tonic and consequently convergent. According to (16) their limits must be equal

to the solution of H,(u) = 0 so that
(17) lim hy(x) = up= — 3+ Jx~3 if x>8.

On account of (8) we can apply our method in any simply-connected domain
excluding the circle ] z| <2 and including the points z = x > 2, and obtain (17)

even for x > 2.
For odd indices we get from (17) and definition (13)

lim hy (X)) = =i+ JYx =3 (x>2).

n-*o0

Hence, lim,, ,, h,,(x) # lim,_ , h,,1(x), i.e., {h(x)}T diverges in x > 2.
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ARE THERE 7 + 2 POINTS IN E" WITH ODD INTEGRAL DISTANCES?

R. L. GRAHAM, B. L. ROTHSCHILD anp E. G. STRAUS*

In this note we answer the question posed in the title.

THEOREM 1. For the existence of n + 2 points in E" so that the distance between
any two of them is an odd integer, it is necessary and sufficient that n +2 =0
(mod 16).

There are analogous results concerning integral distances relatively prime to 3
or 6 which we mention at the end of this work.
The main tool in the proof of the necessity part of Theorem 1 is a theorem of

Cayley (see, e.g. [1], p. 122).

* Presented to the Southern California Section on March 11, 1972, by E. G. Straus, whose work
was supported by NSF Grant No. GP-28696. The work of B. Rothschild was supported by NSF
Grant No. GP-23482.
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THEOREM 2. Let the set of (") nonnegative numbers d;j; 1 Si<j<n+2bea
set of distances d,; = d(p;, p;) of points py,pa,++*, Pus2 in E". Then

0 d%z d%s d%n+2 1

d3q 0 A3 dypes 1

df+21 d§+22 coeee 0 1
1 1 PR 1 0

where d;; = d;.

Proof. We consider the points p; as vectors in R" and assume without loss of
generality that p,, , = 0, the origin. Then

dizj = \Pi - Pj|2 = ll’il2 + ij|2 - 2(1’.',1’,')

and
(IP:‘|2 + |Pj|2 — 2(p,s Py)) 1 i
A= 1.
1 1 . . . 1 OI
Subtracting Ipi lz times the last row from the ith row and |pj ]2 times the last column
from the jth column we get

1 —2pi,p0) 0 —2ApuPar) 01
—Apup) A PurtsP) 2 Par1sPas) O 1
N 1 N 0 SRR 0 01
1 01 1 1 10
(P p1) o (PuPary) |
= (= 12" : : |
(Par1sP) 0 (Pur1sPusd) i

— (_ 1)n2n+1 det(P'P"),
where the n x (n + 1) matrix

Pt

Pr+1
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has rank P < n, and hence rank (P P") < n, so that det(P- P") = 0.

REMARK. For an alternate proof, consider the linear mapping (ay, -+, dp42)
— (Xa;p;, Xa;)on R**2into the (n + 1)-dimensional space E* @ R. It has non-zero
kernel, so there is a vector (aj,--,a,4+,) # 0 such that Xa;p; =0 and Xa;=0.

Set ¢ = — Xa; | pjlz. By a short direct calculation,
n+2
2 a;|lp—p;l*+c=0, Ya,=0.
o i i
=

This is a system of n + 3 equations and it has the non-trivial solution (a,,---, a,, ¢),
so its determinant is zero. That is Theorem 2.
The necessity of Theorem 1 now follows from a lemma.

LeMMA 1. Let d;;; 1 £i<j < n+2 be a set of odd integers. Then
A =(— 1)*(n + 2)(mod 16).

Proof. Since d;; is an odd integer we get ¢;;=d> — 1=0 (mod 8). Subtracting
the last column of A from all other columns we have

i—l €12 ° ° " Cypt2 1

iczl S S 1
A= | :

{Cnv21 -1 1

|

| 1 PPN 1 0

By first adding the first n + 2 columns to the last column and then adding the first
n + 2 rows to the last row, we get

-1 Ci2 """ Ciy4z Gy -1 Ci2 ° " " Cipgra @y
€21 =1+ Crus2 Gy €21 =1 cippr 4
A= = ’
Crnt21 o =1 Ant2 Crt21 R A2
1 R | n+2 a; *ct Ques h+2+4a

where a;= Xz ¢;and a= X2 a, =22, ¢

Since all the terms off the main diagonal in the last expression of A are divisible
by 8; and each product in the expansion of A other than the main diagonal term
contains at least two off-diagonal factors; we have

A=(=1)""*(n+2+a) = (= 1)'(n + 2 + a) (mod 64).
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Buta=2 X, ; ¢;; = 0 (mod 16) so that

A= (—1)(n+ 2) (mod 16).

ij

We can now complete the proof of Theorem 1 by making a suitable construction.
Let n = 16s — 2 and choose py, -, p, as vertices of a regular (n — 1)-simplex of
edge length 8s — 1 in the hyperplane x,, = 0 so that its centroid is at the origin. Choose
the remaining two points p,.{, Ps+2 as (0,:-:,0,+ (2s — 1)) on the x,-axis. In
this set there are only three distinct distances, d(p;,p;) =8s—1 for 1 £i<j=<n;
d(pn+l’pn+2) =4s—1 and

M APy pas)® = PP+ 25 -9%  1SisSmk=12
In order to compute this last distance we need the following:

LEMMA 2. The distance from the centroid of a unit simplex in E* to a vertex is
dp = Jk|Q2k + 2).

Proof. The unit vectors in E*** form the vertices of a regular k-simplex of edge
length \/2 with centroid (1 /(k + 1)) (1,1,---,1). Thus the distance from a vertex to

the centroid is
1 1 \2 1 \2 1 )2
\/( "k+1) +(k+1)+"'+(k+1)

/24,
K K Tk
= \/(k+1)2+(k+1)2=\/k+1’

Thus the value of | p;|? in (1) is

16s—3  128s* —40s + 3
20165 —2) g ’

lPi|2 =Bs—1)%d{s-3=(8s— 1)

and
A(pis Pu+i)?® = %(1285* — 40s + 3 + 165> — 8s + 1)
= (65 — 1)

We have thus constructed a set with n 4+ 2 = 16s points and only three distinct
distances, 4s — 1, 6s — 1 and 8s — 1, all of which ate odd, attained respectively once,
2n and (3) times.

There are many other examples of constructing (n + 2)-tuples of points with only
three distances, all odd in case n = 16s — 2. For example we could construct regular
simplices in complementary orthogonal subspaces E'**~? and E ** with edge lengths
14s — 1 and 2s + 1 respectively. The third distance d satisfies

d?=14s — D)2, + Qs+ 1) %2 = (10s — 1)?
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REMARK. It is impossible to have n + 3 points in E” so that all distances are odd
integers since by Theorem 1 this would imply both n + 2 =0 (mod 16) and (n + 1)
+ 2 =0 (mod 16).

The reasoning in Lemma 1 can be applied equally well in the case of integral
distances relatively prime to 3.

LemMa 3. Let d;;; 1 £i<j=n+2 be a set of integers relatively prime to 3.
Then A =(— 1)*(n + 2)(mod 3).

Proof. Since d; =1 (mod 3) we get
A=|J=1I|,13=(=D%n +2) (mod3).

THEOREM 3. There exist n + 2 points in E" whose distances are integers relatively

prime to 3 if and only if n =1 (mod 3).
T here exist n + 2 points in E" whose distances are integers relatively prime to 6

if and only if n = — 2 (mod 48).

Proof. The necessity of the two congruences follows from Lemma 3 and Theorem

For sufficiency in the second case we can use the same construction used in the
proof of Theorem 1. Set n =48s —2 and construct the set of n + 2 points with
distances 12s — 1, 185 —1 and 24s — 1 respectively.

For sufficiency in the first case, set n = 3s + 1 and construct a regular simplex in a
hyperplane E** of side length 4(3s + 1) with centroid at the origin; then add two
more points on the axis perpendicular to E* at distances 3s — 1 from the origin.

We then get three distances 4(3s + 1), 65s.— 2, 9s + 1 since

9s + 1)2 = (3S - 1)2 + m%i‘_‘l—)' - 16(3s + 1)2.

These distances are attained respectively (>% ') times, once and 6s + 2 times.

Our examples involve sets of points determining three distinct distances. One
might ask whether there are examples involving (n + 2)-tuples of points with only
two distinct distances. The answer appears to be in the negative for odd distances,
while there are certain dimensions in which there are examples of (n + 2)-tuples
with only two distinct distances both prime to 3.

One could generalize the above results to conditions on integral distances of the
form d,.zjsl (mod m) for general moduli m. However this does not appear as

attractive as the above treated problems.
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