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INTRODUCTION

The following problem was raised by H.-J. Stoss[3] in connection with certain questions related
to the complexity of Boolean functions. An acyclic directed graph G is said to have property
P(m, n) if for any set X of m vertices of G, there is a directed path of length n in G which does
not intersect X. Let f(m, n) denote the minimum number of edges a graph with property P(m, n)
can have. The problem is to estimate f(m, n).

In this paper we shall restrict ourselves to the case m = n. We shall prove

cinlognfloglogn <f(n,n)<c,nlogn ¢))

(where ¢y, ¢, ..., will hereafter denote suitable positive constants). In fact, the graph we
construct in order to establish the upper bound on f(n, n) in (1) will have just can vertices. In this
case the upper bound in (1) is essentially best possible since it will also be shown that for c,
sufficiently large, if a graph on c.n vertices has property P(n, n) then it must have at least
csn logn edges.

A PRELIMINARY LEMMA

In order to establish the upper bound in (1) we first need the following result.

Lemma. For all 8 > 0 there exists ¢ = ¢(8) such that for all ¢ sufficiently large, there exists a
bipartite graph B = B(§;t) with vertex sets A and A’ so that:

) |A|=]A"|=1:

(ii) B has at most c¢(8)t edges;

(i) If X C A, X' C A’ with | X| = 8t,{X'| = 8t then (X, X") = {{x, x'}: xeX, x'eX'} contains an
edge of B.

Proof: We use a simple probabilistic argument to show the existence of B. Form a bipartite
graph B on the vertex sets A and A’ with |A|=]A’'| =t by selecting for each aeA a random
subset B(a)C A’ of cardinality d = d(8) (to be specified later). Call B “bad” if there exists
X CA, X'CA’, with |X|= 8t, |X'| = 8t, so that (X, X’) contains no edge of B. For fixed X and
X', the probability that B is bad because of these two subsets is at most

(VGG

Hence, the total probability that B is bad is at most

( t )2((1 _ a)t)6t< t)(l—é)t/( t)t

ot d d d)’

A simple computation shows that if d is chosen suitably large, for example, so that
(1-8%" <1/4,
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then for ¢ sufficiently large (e.g., t >d/8) this probability is less than 1, and so, a graph
B = B(8;t) must exist which satisfies the requirements of the lemma.

CONSTRUCTION OF G
The next step in the proof of (1) is the construction of the directed graph G. For large n,

G = G(n) will have as its vertex set V ={0,1,...,2" —1}. If v and m are positive integers, then
D,(m) will denote the set {v,v+1,..., v +m —1}N V, Similarly, D*(m) will denote the set
{v,v—-1,..., v=m+1}N V. In general, €, ¢€,..., will denote suitably chosen fixed positive

constants to be specified later. The edge set E of G is formed as follows:
(i) For veV, the pairs (v, x), xeD,..(4n), are in E;

(i) For each t with n/2=2' <2", and each i as specified below a copy of B(e:;2') is formed
between the vertex sets A = D,.»(2') and A’ = Dgnan2(2), 0=m <2, where i = 1,2,..., 10
(or if i cannot assume the value 10 because (m + 10)2° > 2", then it ranges from 1to 2" " — m). All
edges are directed from x to y with x <y.

An elementary calculation shows that

|E| < cen2".

THE UPPER BOUND

Theorem 1. For a suitable € >0, G(n) has property P(e. 2", €. 2") for all sufficiently large n.

Proof: The theorem will be proved by a sequence of claims. First we show that G(n) shares
with the graphs B(e; t) the following property.

Claim 1. If m=2n and X C D,(m), X' C D,.m(m), satisfy |X|=e.m, |X'|= e2m, then
[X, X'T={(x,x"): xeX, x'eX'} contains an edge of G(n).

Proof of Claim: Let 2' =m/[2<2'"". Thus, m/4 <2’ so at most five of the intervals D, »(2")
intersect D:(m) and at most five of them intersect D;...(m). Since |X| = e.m then some D,»(2")
and D, »(2') have

|D,.2(2)YN X|= €2m/5,|D, »(2) N X'| = e2m 5. 3

But we must have |r’ —r| <10 so that by the construction of G(n) there is a copy of B(e;2")
between D, »(2°) and D, »(2"). Thus, if €/5>¢€, and m =2' then the property of B(e,; 2°)
guaranteed by the Lemma implies that [X, X'] contains an edge of G(n) provided that t is
sufficiently large (which is guaranteed by choosing n large enough). This proves the claim.

Next, let us choose an arbitrary fixed set X of vertices with | X| =< €. 2". The vertices in X will
be referred to as the marked vertices of G; the remaining vertices of G will be called the
unmarked vertices of G.

Let us call an unmarked vertex yeV bad if for some m =1 either at least esm vertices in
D, (m) are marked or at least esm vertices in D*(m) are marked. Otherwise, an unmarked vertex
of G is called good.

Claim 2. There are at most €,2" bad vertices.

Proof of Claim: Let y, denote the least unmarked vertex of G (if it exists) for which for some
m = 1, at least eam, vertices in D,,(m,) are marked. In general, if y,,..., y. and m,, ..., m. have
been defined, let y«.: be the least unmarked vertex of G following yx +mui — 1 (if it exists) for
which for some mui., =1 at least esm,., vertices in D,,,,(mi.,) are marked. We continue this
process until it no longer can be applied, so that, say, y,,..., y. and m,,..., m, have been
defined. Similarly, let y* denote the greatest unmarked vertex (if it exists) for which for some
m¥ =1, atleast esm* vertices in D*,(m¥) are marked, etc. In this way, we define y%,. .., y* and
m¥%,..., m*.

It follows from the preceding construction and the definition of a bad vertex that all bad
vertices are contained in the set

Y= U D, (m)U U D¥(m?)
k=1 k=1

Thus, there are at most

M:Z mk+2 mt
=1 =t
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bad vertices. However, by our construction there are at least (€3/2)M marked vertices in Y. Since
by hypothesis there are at most ¢.2" marked vertices in V then we have

(6sI2)M <¢€.2",
M = (2¢e/e3)2" < €42",

which proves the claim.

For an unmarked vertex x, let P,(m) denote the set of all unmarked vertices in D.(m) which
can be reached from x by directed paths which contain only unmarked vertices.

Claim 3. If x is a good vertex and |D,(m)|=m then

|P<(m)| > esm C)]

Proof of Claim: If m <4n then since x is good, at least (1 — e;)m vertices in D,(m) are
unmarked and x has edges directly to all of them. Suppose m > 4n. Let m’ denote [m [2). Since
|D<(m')| = m’ then by induction |P.(m')| > esm'. Since x is good then at most esm vertices in
D,(m) are marked. Hence, at most esm vertices in Dy...-(m') C D, (m) are marked. Since m' =2n
and €; = €, then there are edges from P, (m') toatleast (1 — e2)m’ verticesin D, ....(m’). But at most
€sm <3esm’ vertices in Dc.n-(m’) are marked. Hence, P.(m’) must have edges to at least
(1—€2-3e)m’ unmarked vertices in Dy.m(m’). Since 1— e, — 33> 3¢5 then

|Px(m)| >3esm’ > esm.

The claim now follows by induction.

In exactly the same way if follows that if P*(m) denotes the set of all unmarked vertices in
D*(m) which are connected to the unmarked vertex x by a directed path containing only
unmarked vertices, and x is a good vertex and D*(m) = m, then

|P%(m)| > esm. “4)

Claim 4. Let x and x' be good vertices with x <x'. Then x'eP,(2").

Proof: If x' — x = 4n then the claim is immediate since by construction there is an edge from x
tox’. Assume x' ~x >4n.Lety = [(x + x')/2] and let m =y — x + 1. Consider the intervals D.(m)
and D*(m). Either they are adjacent or they have the single element y in common. Since x and x’
are good then by (4) and (4')

|P<(m)| > esm,|P%(m)| > esm. 5)

Since €5 = €, then by Claim 1, there is an edge in G from a vertex of Px(m) to a vertex of P*.(m).
Thus, there is a directed path from x to x' containing no marked vertices and the claim is
proved.

The proof of the theorem is now immediate. By Claim 2 there are at least (1 e,— €)2" good
vertices in G. By Claim 4 we can form a directed path which contains only unmarked vertices and
which contains all the good vertices (since x’ can always be chosen to be the next good vertex
following x). Since 1—€s— € > € then the theorem follows (where it is easily seen how the
appropriate values of € and c¢. can be chosen).

THE LOWER BOUND

The following result will establish the lower bound in (1).

Theorem 2. Let H be an acyclic directed graph with at most ¢-n log n /log log n edges where n
is a large fixed integer. Then there is a set of at most n vertices of H which hits every directed
path of length n.

Proof: Let us denote the vertex set of H by V ={1,2,..., v}. We may assume that all edges
are of the form (i, j) with i <j. For an edge ¢ = (i, j) of H, let length (e) be defined to be j —i.
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Partition the edges of H into classes Co, C,,..., C, where
C. = {e: 24k loglog n Slength (e)<24(k+l)loslos n}

and r =[log v/4loglogn].

Since H has at least cenlogn/loglogn edges then it follows that v =con'? and
r = ciolog nfloglog n. Hence some class C, with 0 <a <r has at most ¢.,n elements. Let us
delete all vertices in H incident to any of the edges in C.. Furthermore, we also delete those
vertices x € V which satisfy

Osx—m .24aloglogn(1+22103103n)<24aloglogn

for some integer m =0. This latter step removes at most
2
Flawes 1 Jo = 0n)

vertices, since v < 2csn log n/log log n. Hence we have deleted at most ci,n vertices altogether.
However, any directed path remaining has at most

(2(4a +2)loglogn __ 24a log log n:

24(a+1)loglogn )v = 0(")

edges, since we cannot go more than 2“**? /818" _ptalosloen grepq without using an edge whose
length exceeds 2** '**'**"; and the length of such an edge actually exceeds 2*“*”'***°* " Thjs proves
the theorem.

By using a different partition of the edges of H, namely, into the classes C, . . ., C} where

Ci={e: 2" <length (¢) <2°v**"}

for a suitable constant c1s, we can establish the following result.

Theorem 3. If c.. is sufficiently large then any graph G on cu.n vertices having property
P(n, n) must have at least c,sn log n edges.

The graphs G(n) used in Theorem 1 show that the result in Theorem 3 is to within constant
factors best possible.

SOME RELATED QUESTIONS

We now consider several problems for ordinary (undirected) graphs. Let F.(n, n) (resp.,
F,(n, n)) denote the smallest integer for which there is a graph with F.(n, n) edges so that the
deletion of any n of its vertices there still remains a connected component of n edges (resp.,
vertices). We shall prove by probabilistic methods that

Fe(n,n)<cun, F.(n,n) < cyn. 6)

The method we use is the same as that in the work of Erdés and Renyi[1], [2]. It turns out that
almost all graphs have the desired property.
(2—%—: n )

cn

Theorem 4. For every € >0 there is a ¢ = c(e) so that all but 0(( )) graphs G with

(2 + €)n vertices and cn edges have the property that after the omission of any n of its vertices, a
connected component of at least n vertices remains.

Proof: It suffices to show that if n vertices are omitted and the remaining n (1 + €) vertices are
split into two classes S, and S, with |Si| = en, |S2| = en, then there is at least one edge joining a
vertex of S, to a vertex of S,.

Consider a random graph G on (2+ €)n vertices and cn edges (where ¢ will be specified

later). There are ((2 +ne )n) ways that n vertices of G can be deleted. The remaining (1 + €) points
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n(l+e)

can then be splitinto two sets S, and S, in at most 2
is at most

ways. Thus, the total number of splittings

((2 + G)n>2n(1+g) < p@rem Prare ia+em
n

Between S, and S, there are at least en” potential edges. The probability that none of these edges

actually occurs in G is less than (l —;) . Thus, if ¢ is chosen so that
(2+¢€)n
3(1+€)n _ C o
2 (1 —————(2+6)n> -0 V)]

as n - then we easily see that almost all graphs cannot be split in such a way.
Since

2

C < —(ec/2+eNn
1- —) —e
( 2+eé)n

then for ¢ large enough, e.g., ¢ > 18(e +€™),

e—(zc 12+e)n < e—3(1+£)n

and (7) holds. This proves the theorem.

The other half of (6) is proved in a similar way. It would be interesting to determine the best
possible value of ¢ but this does seem to be too easy.

We mention here the undirected analogue of (1). Let g(n, n) denote the smallest integer for
which there is an undirected graph of g(n, n) edges so that if we omit any n of its vertices then
there always remains a path of length n. We believe

gmm) ., glnn)

n nlogn

as n » and hope to return to this question in finite time.

A related question is the following: Consider random graphs on n vertices and Cn edges. Is it
true that for large C almost all of these graphs have a path of length n{1 — €)? It is known[4] that
almost all graphs on n vertices and (1/2+¢) n logn edges are Hamiltonian.

It is possible to introduce another parameter into these questions. Let F.(t; n, n) denote the
smallest integer for which there is a graph with t vertices and F.(t;n,n) edges having the
property that if any n vertices are deleted there still remains a connected component with at least
n vertices. If t/n - ¢ >2 then F.(t;n,n)/n > A(c) where A(c)—>x= as ¢ = 2. (The behavior of
F.(t; n,n)/n is similar). We would also omit edges instead of vertices but leave the formulation
of these questions to the reader.
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