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Recently a number of striking new results have been proved in an area
becoming known as RAMSEY THEORY. It is our purpose here to describe some of
these. Ramsey Theory is a part of combinatorial mathematics dealing with
assertions of a certain type, which we will indicate below. Among the ear-
liest theorems of this type are RAMSEY's theorem, of course, VAN DER WAERDEN's
theorem on arithmetic progressions and SCHUR's theorem on solutions of
Xty = z.

To make our task easier, we will introduce the "arrow notation" of
ERDOS and RADO. This was originally used for generalizations of Ramsey's
Theorem to infinite cardinals, but can be easily adapted to other cases as
well. The meaning of the arrow notation will become clear by its use in the
examples throughout this paper.

As our first example, consider:

This expression is just an abbreviation for the following assertion: if the
k-element subsets of an n-element set are partitioned into r classes, then
for some i there is an Ri—element subset Li of the n-element set such that

all the k-element subsets of Li are in the i-th class.

THEOREM. (RAMSEY) . For all positive integers k,r,%l,...,lr, there exists an

N = N(k,r, %

1,...,2r) such that if n 2 N, then n i»<21,...,£r>.

In fact, RAMSEY considered only the case where all the Zi are equal.
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He also proved NOH?'(NQ,...,NO) which actually is stronger than the finite
theorem above. The consideration of such statements with large cardinals or

ordinals is a subject in itself and will not be discussed here. For the large
cardinals the subject is fairly complete and will be covered in a forth-
coming book of ERDéS, HAJNAL & RADO. For ordinals, the theory is develop-

ing rapidly, although there are still many open questions. To give the

flavor of a result of this type, we mention one of the most interesting

recent ones.

THEOREM. (CHANG, LARSEN, MILNER). ww'—i* (ww,k)

This theorem asserts that if the pairs (i.e., 2-element subsets) of a
set of order type w0 are partitioned into two classes, then either the first
class contains all the pairs of a subset with induced order type ww, or the
second class contains all the pairs of some k-element subset.

This last example illustrates the arrow notation in a case where we
deal with sets with structure (here the structure is that of order) .

In general, in a Ramsey Theorem an assertion of the forﬂ]AE?(Cl,...,CrL
where the symbols A, B and Ci denote objects with a certain structure. For
example, as above, they could be sets or sets with order. Other examples
include graphs, finite vector spaces, sets containing solutions to systems
of linear equations, Boolean algebras and partitions of finite sets.

In the remainder of the paper, we will consider six examples of Ramsey
theorems. The first two concern graphs and are due to W. DEUBER and to
J. NESETRIL & V. RODL. The next three concern systems of linear equations
and their solution sets. These are results of N. HINDMAN, E. SZEMEREDI and
W. DEUBER. Finally, we will discuss some results of K. LEEB on abstract

categories which are "Ramsey’.
GRAPHS

Recalling the previous statement of Ramsey's Theorem, we see that the

first non-trivial case is

6 5 (3,3

This can be restated as follows: if the edges of the complete graph KG on

six vertices are 2-colored arbitrarily, then some monochromatic triangle K3

must be formed. This graphical form leads to several general considerations.

The most natural of these, an immediate consequence of Ramsey's Theorem
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(with k = 2), is simply:
For every finite graph H, there is a finite graph G such that G (H,H).

Here, the arrow notation means that if the edges of G (represented by the
2 below the arrow) are 2-colored arbitrarily, then G will contain a mono-
chromatic subgraph isomorphic to H.

It would be stronger to require that the monochromatic subgraph above
be an induced subgraph of G. We could write G‘E*(H,H) also in this case,
provided we understand that we mean induced subgraphs here. Actually, to be
rigorous, we should use a "different" kind of arrow for each different
meaning. The proper setting for this is in terms of category theory as orig-
inally indicated by LEEB. We will elaborate on this when we discuss LEEB's
recent results at the end of this paper.

We now turn our attention to the first result, which concerns Znduced

subgraphs of graphs.

THEOREM. (DEUBER [21). For every finite graph H, there exists a finite graph
G such that G-E»(H,H).

SKETCH OF PROOF. What DEUBER actually proves is the equivalent but more
convenient statement: for every choice of finite graphs G and H there exists
a finite graph K such that K-§>(G,H). The proof is by induction on |G|+|H]|
where |G| denotes the number of vertices of G. The small cases are trivial.
Let g be a vertex of G, G = G-{g}, and let S be the subset of G to which g
is connected. Also, let h in H, H and T be defined similarly.

By induction we can find G* and H* such that G*;§+(§}H) and H*-E*(G,;b.
We now form a large graph K as follows: Start with G . Let G ,...,Gm be all

1

— *
the occurrences of G as an induced subgraph of G and let S ,...,Sm be the

1
corresponding subsets S (there may be more than one choice for an Si; any

one is allowed). Now replace eachvertex of S = S U...USm = {xl,...,xﬁ}

by a complete copy of*H*, with the copy*of H* re;lacing X, denoted by H:.*
Connect a vertex of Hi to a vertex of Hj iff xi and xj are connected iz G .
Also, if some vertex v is not in S, connect v to all the vertices of Hi iff
v and xi are connected in'G*. Thus, we have essentially "exploded" some of
the vertices of G* into H*'s.

Suppose, in the simplest case, that all the Si are disjoint. Let

—- — *
Hl""'Hn be the occurrences of H in H and let Tl""'Tn denote the cor-

*
responding subsets T. For each fixed Si' consider the associated H 's and
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choose one Tj from each H*. For each i and such choice of T,'s, we introduce
a new vertex connected exactly to these T,'s. Hence, if ISiI = k, then for
this i we have added nk new vertices. Singe we have m disjoint Si' then
there are altogether mnk new vertices. This completes the definition of K.

Suppose now the edges of K are 2-colored, say, using the colors red
and blue. By the construction of H*, each H* in K has either a red copy of
G or a blue copy of H. If the first alternative holds, then we are done. So
assume each H* in K contains a blue copy of H. Let yl,...,ym be the new
vertices corresponding to the subsets Tj for these copies of H (i.e., one
yi for each Si). If any of the yi are connected to any of the Tj by all blue
edges, we are done since in this case we have a blue copy of H. Thus, we may
assume that each yi is connected by a red edge to some vertex T ¢ Tj for
each Tj to which it is connected. Let yi be connected by red edges to
til""'tiw' Consider the griph G obtained from X by deleting all the ver-
tices of all the copies of H except for theﬁ?ij' and deleting ail the new
vertices except yl,...,ym. By construction, G is isomorphic to G together
with the Y- Also, it is an induced subgraph of K. Since each v, is connect-
ed to the corresponding Si by only red edges, we are done. For either
G c G contains a blue copy of H or, it contains a red copy of E} say E;,
which together with yi forms a red copy of G. This completes the argument
for the case that the Si are disjoint.

The only obstruction preventing this from being completely general is
that it usually happens that for some a and b, Sa n Sb # % in G. This in
turn would prevent us from choosing the same ti' for both Sa and Sb when
necessary. To get around this, we add another step to the construction.
Namely, after replacing the vertices of S by copies of H*, we take those in

* *
the Sa n S and replace each vertex of the H itself by a copy of H , con-

b

necting it up in the same way as before. We can then be certain of obtaining
*

a vertex connected by only red edges to some copy of H , and we can proceed

essentially in the same way as before. [I

Of course, the graphs K resulting from this construction are usually
much larger than are actually required. For example, the graph K constructed
this way for the assertion K-E*(K3,K ) is K = K_,. Note also the high clique

3 81
number K81 has relative to that of K3.
F. GALVIN had asked if for each finite graph H with clique number
cl(H) = k (where cl(H) = max{n | K is a subgraph of H}), there is a graphG

also having cl(G) = k such that G'E+(H,H). As above, we consider induced
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subgraphs here. This question has been very recently answered in the affir-
mative by J. NESETRIL & V. RODL. One sees easily that this implies DEUBER's
result.

FOLKMAN, in response to a question of ERDOS and HAJNAL, had earlier
shown that there exists a graph G with c¢cl(G) = k such that G';'(Kk,Kk).
FOLKMAN also proved that for any G and H, there exists a K with cl(K) =
= max{cl(G),cl(H)} such that K-z+(G,H) (where the 1 below the arrow indi-
cates that we are coloring the vertices of K-instead of the edges). In fact,
NESETRIL & RODL also make use of this theorem.

The second result we discuss is the following:

THEOREM. (NESETRIL & RODL). For every finite graph B there exists a finite

graph G such that G 3 (H,H) and cl(G) = cl(H).

SKETCH OF PROOF. The proof uses the ingenious idea of letting the vertices

of G be subsets of a large set. By appropriately defining when edges occur
between them, and applying Ramsey's Theorem to certain subsets, a large
subset is obtained with the vertices and edges determined by it being very
well behaved.

We will make some definitions first, and then indicate somewhat how the
proof goes, especially for the case of cl(H) = 2, which is considerably
simpler and more direct than the general case. We begin with the definition
of the graphs (n,T,p).

Let A,B be two p-subsets of [1,n] = {1,2,...,n}. The type (or p-type)
t(A,B) of A and B is the pattern of their relative order, defined as follows:
List the elements of A U B in increasing order assuming min{A-B} <min{B-al},

say X;,X 2 < 2p. If X, € ANB replace it by two copies of itself.

2,...,X2,
The new list thus obtained, say yl'y2""'y2p’ is of length 2p. The type
t(A,B) is then defined to be the sequence (?&,?é,...,?ép), where ?i = 2 if
Y, € ANB, ?i =0 if y; € A-B, and ?i =1 if y; € B-A. We let t(B,A) = t(A,B.
Let T be a set of p-types. The graph (n,T,p) is defined by having as
vertices all [g) p-subsets of [1,n], and as edges, all pairs A,B of
p-subsets with t(A,B) ¢ T. We define the clique number of T by cl(T) =
= sup cl((n,T,p)). (Not all T have finite clique number, e.g., {(0,1)}=T,
altgough some do.)
The beautiful construction of (n,T,p) has the property that for large
n it is extremely rich in induced subgraphs (m,T,p), for m < n. This enables

us to use Ramsey's Theorem ultimately to obtain very well behaved subgraphs.
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The first result in the general case is to show that for each H there
exist p and T, so that H is an induced subgraph of (n,T,p) for all large n,
and with c¢l(T) = cl(H). T and p are defined inductively, in general, and
are quite complicated. However, for cl(H) = 2, we can describe T much more
simply and, in fact, we can assert even more. Namely, for each H, let its
vertices be ordered arbitrarily, say, X,,x

1772
¢: H > (n,T,p) for a suitable n,T,p such that cl(T) = 2, and ¢ maps H

reserX . Then there is a mapping

isomorphically into an induced subgraph of (n,T,p) with t(@(xi),®(xj)) de-
pending only on j, if i < j. In the general case cl(H) = k, a similar result
holds, but the proof is much more complicated. For the remainder of the
discussion, we restrict ourselves to cl(H) = 2. The mapping ¢ is defined
inductively. T is the set of all types starting with some 0O's, two 2's, then
0's and 1's only, e.g., (0,0,0,2,2,1,1,0,1,0,1,1). It is easy to see that
cl(T) = 2.

Now suppose for large N that the edges of (N,T,p) are 2-colored. For

(2 —1)(2p—2

each (2p~1)-subset S of [1,N] there are ——Eé——— o-1

with AUB = S. Of those pairs, some number m have their type in T. If we list

) pairs of p-subsets A,B

these in some canonical order, say lexicographically, then we get for each
AUB a list of m types, corresponding to m edges, and thus m colors. But
this produces a 2m~coloring of the (2p-1)-subsets of [1,N]. Thus, for any n,
if N is large enough, Ramsey's Theorem implies that there is a subgraph
(n,T,p) of (N,T,p) with all edges of a given type having the same color.
Let H be an arbitrary graph with cl(H) = 2, and let G* be such that
G*'E*(H,f), which exists by FOLKMAN's result. Lettizg % be as above, we
have ¢(G ) ¢ (n,T,p) & (N,T,p). Each vertex xj of G is associated with a
single type*t(Q(xi),Q(xj)) for i < j, and thus with a single color. By
choice of G , then, we obtain a subgraph H all of whose vertices have the
same color. But by the definition of this coloring, all edges of H have the same
color. This completes the case cl(H) = 2, since by letting G = (N,T,p) we

have G E*(H,H). As previously remarked, the proof for the general case

cl(H) =k is similar in spirit but with somewhat more complicated details. [

LINEAR EQUATIONS

Let L = L(Xl""'xn) denote a finite system of homogeneous linear equa-

tions in the variables Xyreoer X with integer coefficients. For a set S of

integers, we write S + (L,...,L), if L always has a monochromatic solution
¥
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for any r-coloring of S. A system L is said to be regular, if, for all r,
P+ (L,...,L), where P denotes the set of positive integers.
R. RADO has chardcterized all regular L by generalizing the properties

of the two best known examples. These are, respectively, L2: X+y = z and

L(k): X)Xy = KyTX = . =X UK That L2 is regular is SCHUR's theorem.
Of course, the regularity of L(k) is trivial (by choosing all the xi equal).
However, if we rule out this possibility, then a solution of L(k) determines
an arithmetic progression of length k. This restricted regularity of L (k)
for all k is just VAN DER WAERDEN's well-known theorem.

Unfortunately, however, this surprising result still does not specify
which color these progressions have. It was conjectured some 40 years ago
by ERDSS and TURAN that a solution must always occur in the most frequently
occurring color. More precisely, they conjectured that if R is an infinite
sequence of integers with positive upper density, i.e.,

— |Rn [1,n]] S

) Be

(U

then R contains arbitrarily long arithmetic progressions. No progress was
made on this problem until 1954 when K.F. ROTH showed that if R satisfies
(*), then R at least contains a three-term arithmetic progression. In fact,

he showed more, namely, that for some c > 0, if IR n [1,n]l > *——SE———-then

log n
R must contain a three-term arithmetic progression. The next siggifgcant
step was not made until 1967 when SZEMEREDI proved that (*) implies that R
contains a four—term progression. However, SZEMEREDI's most recent result,
which must be considered an achievement of the first magnitude, finally

settles the original conjecture of ERDOS and TURAN in the affirmative.

THEOREM. (SZEMEREDI). (*) <mplies R contains arbitrarily long arithmetic

progressions.

SKETCH OF SKETCH OF PROOF. SZEMEREDI's proof is completely combinatorial in

nature and is based on a lemma on bipartite graphs which is of considerable
importance in its own right. We shall give a very brief discussion of the
flavor of the proof (which runs just under 100 pages in length), although
we can only hint at the extreme ingenuity used in the proof itself.

Let G denote a bipartite graph with vertex sets A and B. We call G
regular if all vertices in A have the same degree and all vertices in B have

the same degree. We would like to assert that every sufficiently large
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bipartite graph can be decomposed into a relatively small number of regular
bipartite subgraphs, but unfortunately this is not true. However, it is true
if the subgraphs are only required to be "approximately" regular and if we
are allowed to ignore a small fraction of the vertices in A and B. More

precisely, for X € A, Y < B, let k(X,Y) denote the number of edges in the
k(X,Y)
Bk the
density of edges in this induced subgraph. Then SZEMEREDI proves the

graph induced by the vertex sets X and Y and let B(X,Y) denote

following:

LEMMA, For all 1185084040 strictly between 0 and 1, there exist integers
My Py MN such that for all bipartite graphs G with |A| =m>M, |B] =n>N

there exist disjoint Ci ca, 0<ic< mys and for each i < L disjoint

ci,j’ j < s such that:

(a) 1a - i<Lr)nO Cil < pm,|B - j<%o Ci,j' < on for any 1 < my

(b) for all i < My j < Dy scc,, TS ci,j, with |s| > ellcil,
[T| > ezlci’jl, we have B(S,T) 2 B(Ci,Ci,j)-d;

(¢) for all i < myr 3 < mg and x € Cys B({X}’Ci,j) < B(Ci,C.’j)+6-

Condition (a) says that we have not omitted too many vertices in the
decomposition. Conditions (b) and (c) express the approximate regularity of
the subgraphs induced by the vertex sets Ci and Ci,"

The basic objects dealt with in the proof are not just arithmetic pro-
gressions, but more general structures known as configurations. A l-config-
uration is just a finite arithmetic progression; an m-configuration is a
finite arithmetic progression of (m~1)-configurations.

Let R be an arbitrary fixed set of integers having positive upper
density. The basic idea is to show inductively that there exist very long
m-configurations which have an extremely restricted manner in which they
intersect R. This is done by recursively defining certain special classes
of higher order configurations in terms of rather well-behaved progressions
of lower order configurations. Essentially, by showing that there exist
extremely long configurations of some order which are moderately "regular",
one can deduce the existence of configurations of a higher order which are
even more "regular". This in turn is done by forming bipartite graphs based
on the intersection patterns of the configurations with R and applying the
decomposition lemma. Needless to say, the subtlety of the ideas used can

only be appreciated by reading the actual proof. [J
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Turning our attention back to SCHUR's system L2, we can generalize
this to the system Lk defined as follows: for the variables % and Ygr L

k

consists of all equations of the form z = yswhereESrangesover all

seS XS
non-empty subsets of [1,k]. RADO's results imply that for all k and r,

P > (L ,...,Lk)

r
It is natural to ask what happens for the system
= = < < o},
Lm {Zses X Yg Ssc P, 1 Isi }

N. HINDMAN's remarkable theorem answers this question.

THEOREM. (HINDMAN) . For all r, P - (Lsevesl ).
—— L—_ﬁ—°')

r

SKETCH OF PROOF. In the case Lk it is even true that for each r there is an
N = N(k,r) such that N > (Lk,...,Lk). In other words, no matter which
r-coloring we have, values Xl""’xk can be chosen from [1,N] so that all the
sums Xses X, have the same color. For a fixed r-coloring of P restricted
to [1,N(k,r)] it was not known whether upper bounds for the x; existed
independent of k. The existence of such bounds would allow HINDMAN's theorem
to be obtained directly by a "compactness" argument.

What HINDMAN proves is that for each coloring m of P with a finite
number of colors, there is a function fﬂ: IP > I such that for each m,
0 <m < », there is a set xl,...,xm with all its finite sums the same color,
and in addition, such that xi < fﬂ(i) for 1 £ i € m. That is, we get mono-
chromatic solutions to Lm for arbitrarily large m, where the sizes of the
variables xi are bounded above independently of k but depending on the
coloring m (of all of ).

We can illustrate several of the ideas of the proof, but we need some
notation first. Let m be a finite coloring of P, say P = Alu"'UAr' For

1 <k £ n, we define

Fﬁ(k,n) ={x e P x 2 n and Ji such that k,x,x+k € Ai,

X € Fﬂ(j,n), j < k}.

The Fn(k,n) are sets which can be translated by k without changing color. If

Xy rXgreo. is a sequence of integers, let S(xi) be the set of finite sums of

the x,.
1

The core of HINDMAN's proof is an "exceedingly technical” and quite
P



270 R. L. GRAHAM AND B. L. ROTHSCHILD

clever argument, which establishes that for each 7 there is an infinite
sequence x1,x2,... and n ¢ P such that

n-1
c U
S(xp) Y

F (k,n).
™
To manipulate sequences and sums conveniently, it would be nice to know
that the numbers in the sequences were representable to base 2 in the fol-

lowing manner, e.g.,

X, = 10110111
x, = 110000100000000
Xy = 1100000000000000000

That is, the support of xj should be all beyond the support of xj_1 for each
j. Formally, if 28“1 < Xj-l' then ZS[xj. Such a sequence will be called a good

sequence. Now for every sequence X,,X.,... there is a good sequence {(not

1772
necessarily a subsequence of the xi's) yl,yz,y3,... with S(yi) < S(xi)' This
follows from a compactness argument again.

Hence we basically need to deal only with good sequences. The nice

property of these is that if X = {xl,x y.-.} is a good sequence, there is a

2
bijection TX: S(xi) - P which preserves sums, namely,

TX< Ix)= 1270

seS 7 seS

That is, each block of support corresponds under T to a single binary place.
We use this fact crucially in the following construction. Suppose 7 is

a coloring, and x_,,%X . ,X is a good sequence with

T’ g2 3t
n(m)-1
= 1
S(x“i) k1 Fﬂ(k,n(ﬂ)).

Then using the map T determined by this sequence, we can get a new coloring
n' of P by letting two numbers have the same r'-color iff their images
under T;l are in the same Fﬂ(k,n(ﬂ)). This is an (n(w)-1)-coloring.

Suppose for all m we have defined fﬂ(i) for i £ & so that arbitrarily
long finite good sequences have monochromatic sums and the i-th term is at

most fﬂ(i), i £ 2, where we take fﬂ(l) = n(m)~-1 (which works for 2 =1 by
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the definition of n(7w)). Then consider such a sequence for the coloring 7'
associated as above with 7. Taking T;l of this sequence, we get a similar
sequence which is constrained by the definition of 7' to have its first 2
terms respectively less than T;l(fﬂ,(i)), i £ 2, and all greater than
n(m)=-1. Further, they must all have the same m-color, and for some common
k € n(m)-1, adding k does not change this color. Then adjoining k as a first
term gives us a new sequence with the first term not exceeding fﬂ(l). Also,
if we let fﬂ(j) = T;i(fﬂ(j—l)), we have the j-th term not exceeding fﬂ(i)
for j £ 2+1.

We have thus constructed, simultaneously for all w, the bounds fﬂ(i).
What we have shown, then, is that for each m = A ,UA U...UAr, and each k,

12

1,...,xk with all its sums in some Ai(k) and xi <

< fﬂ(i), 1 £ i £ k. As we noted above, a compactness argument now completes

there is a sequence x

the proof. []

We remark that because the supports of the X, in a good sequence are
disjoint, we can interpret the X, as disjoint subsets of P and their sums
as disjoint unions. Thus, we obtain: for every r-coloring of the finite
subsets of P, there exists an infinite sequence of finite disjoint sets
LNV IR such that all the finite unions have the same color.

The last of the results on equations is that of DEUBER, who settles a
conjecture RADO raised in his original work. We recall that a system L of
homogeneous linear equations is called regular if for any r, P -+ (L,...,L).
RADO defined a set S € P to be regular if for every regular system L and
any r, S > (L’.é.'L)- What RADO conjectured and what DEUBER proves is the
following:

THEOREM, (DEUBER) . If S © P <s regular and S = AUB, then either A or B is

regular.

SKETCH OF PROOF. The main idea of DEUBER's proof is to define certain sets,

called (m,p,c)-sets, and to characterize regular sets in terms of (m,p,c)-
sets. He then proves a finite RAMSEY theorem for these sets. Finally, by
considering the nice structure of (m,p,c)-sets, he uses a compactness argu-
ment to establish the desired result.

We define (m,p,c)-sets below. However, we can describe them informally
as a kind of %-dimensional array of numbers (actually, certain subsets of

these).
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DEFINITION. For m,p,c positive integers, p 2 ¢, an (m,p,¢)-set A is a set
for which there exist m positive integers al,a2,...,a , such that A =

m
= { Zi=1 Aiai | IAil < p, and the first non-zero coefficient A, has the

value c}.

Now using RADO's characterization of regular systems of equations, we
can show the following two facts:

(a) for every regular system L there exist m,p,c such that every (m,p,c)-
set contains a solution to L;

(b) for all m,p,c there is a regular system L such that every solution set
for L contains an (m,p,c)-set.

As an example, consider the single equation x+y = z. Then a solution is
any set of the form al,a2,a1+a2, which is certainly contained in the (2,1,1)-
set generated by ay and a2. On the other hand, the equations x+y = Zq,

X-y = 22, have solutions exactly of the form x,y,zl,z2 = al,a2,a1+a2,a1—a2,
a (2,1,1)-set. These examples avoid ¢ # 1, which can arise when the coeffi-
cients are more complicated.

By (a) and (b) we see that a regular set is any set containing (m,p,c)-
sets for all m,p,c.

Suppose now that we know the following: for each (m,p,c) there is an
(n,g,d) such that (n,q,d) -+ ((m,p,c), (m,p,c)). That is, if the elements of
any (n,q,d)-set are 2-colored, then there must be a monochromatic (m,p,c)-
set. Thus for S regular, and S = AUB, either A or B must contain “arbitrar-
ily large" (m,p,c)-sets and hence, by what we have noted, either A or B is
regular. The main part of DEUBER's proof is concerned then with establishing
the Ramsey property (n,q,d) + ((m,p,c),(m,p,c)).

This result is similar to one of GALLAI concerning “"n-dimensional
arrays". For our purposes, we may consider an n-dimensional array as a set
of the form

n
S <
X fag + i£1>\iai | 1< pl.

For these we have that for n, p and r there is an N such that XN ->
r

> X reee X ).
e’ " "n,p

r .
However, this isn't quite good enough for our purposes, since an

(m,p,c)-set will contain sums of the form ca; + Ajaj along with certain

Zj>i
differences as well (e.qg., al, a1+a2 and a2 in the example above) while
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XN P may not contain any of its differences. To handle this problem we
7

proceed iteratively.

First, we find a monochromatic

N
X = {ib, + ALa A < = +
np - P1 Loaa b bylsp) =p N,p
i=1
where
N
Z = { 5 X.a, ! [x. ] < p}.
N,p o 14 i
Then in ZN P we find a monochromatic b2+ZNI - etc. Continuing in this manner
14 ’
we can find bl'b2""'b£ such that the color of the sum

b, + ) A,b.
j>1i 13

depends only on i. For large enough %, we may select m of these bj to
generate a monochromatic (m,p,1)-set.

This completes the case ¢ = 1. For ¢ > 1, a similar argument can be
applied where, however, at each step p must be adjusted to compensate for

the effect of c. [

CATEGORIES

The notion of a category having the Ramsey property was introduced by
K. LEEB. It has been used to prove the Ramsey property for the category of
finite vector spaces, among others. A category C is said to be Ramsey if for
any objects A,B and number r, there is an object C such that for any
r-coloring of the A-subobjects of C, all the A-subobjects of some B-subobject

of C have the same color. Formally this says:

va,B,x 3¢ 3 ve($) 11,03,

3 a monomorphism, B i C and i such that the following diagram commutes:
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c¢($) 511,13
aT T incl.
c(y) ~1i} .

c -
Here C[A) denotes the set of subobjects of C of isomorphism type A, and ¢
the function induced by ¢.
We could also abbreviate this by using the arrow notation. A category C

is Ramsey if for every r and objects A,B there is an object C such that
c-> (8,B,...,B) .
¥

To prove this property for a certain class of categories, including the
category of sets (Ramsey's Theorem) and that of finite vector spaces, an
elaborate induction is used. The induction is fundamentally determined by a
generalization of the classical Pascal identity, (E:i) = (kil) + [E).

In his lecture notes on "Pascaltheorie", LEEB has developed more form-
ally and generalized this kind of relationship and used it to prove some new
Ramsey theorems, among other things. What we describe here is LEEB's general-
ization of the ordinary notion of labeled trees to that of trees labeled
with objects from a category. A Ramsey theorem for these structures is then
true if it was true in the original category.

Consider a category C. Then the category 0nd(C) is defined to be the
category of finite sequences of objects from C. That is, the objects of

0rd(C) are finite sequences of objects of C, and morphisms (Cl,C ,...,Ck) >

2

> (Dl'D ""'Dl)’ k < %, are sequences (¢1,¢2,...,¢k) of morphisms from C

2
such that ¢,: C, - D, ,.

i i (i)
We can define the category Thees (C) similarly. We consider rooted,

for some j(i), and 1 £ j(1) < j(2) < ... < j(k) =1,

labeled trees with an orientation, or ordering, of the branches at each
vertex. We take the labels from the objects of C. Morphisms are defined as

follows. Let Tl'TZ be two such objects, and let T,,T, be their underlying

1772
rooted trees. First we "immerse" T1 into T2. An immersion Y: T1 > T2 is a
1 to those of T2 such that:

(a) For any two vertices x,y in Tl’ Y{xAy) = $(x) A Y(y), where for two

monomorphic mapping from the vertices of T

vertices u,v in a rooted tree T, uAv denctes the last common vertex in
the paths from the root to u and from the root to v, respectively.

(b) The order of the branches is preserved by ¥. That is, let B ,B2,...,B

1 k
be the vertex sets of the branches at a vertex x in Tl' given in order,
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and let D1,D2,...,D2

given in order. Then for each i, 1 < i < k, w(Bi) < D,

J (1)

be the vertex sets of the branches at {(x) in T2,
for some j(i),
and 1 < j(1) € ... £ j(k) <€ &.

For example, the circled vertices in T2 below indicate an immersion of Ty

i T, :
into 2

a

root root

Once we have an immersion { of T1 into T2, we then find a set of mor-
phisms from C taking the labels from T1 into the corresponding labels (by
the immersion) of T2. Such sets of morphisms of C (with restrictions deter-
mined by (a) and (b)) are defined to be the morphisms of Thees(C). If we
denote a C-labeled tree by [a,B], where a is the root label and B the

sequence of branches at the root (with labels), we get the Pascal identity:

(La,B]\ _ J_L_ By \ ay B
Trees (O 37ny) = BieBTnee/s ©((ein1) +C(3) x0nd Tnees (©) (7).

What this says is that every subtree (labeled) of type [c,D] in a tree of
type [a,B] either has its root at the root of [a,B], or lies entirely in one
of the branches at the root, with labels mapped accordingly. If one considers
the identity for trees with only one branch at each point, and C the cate-
gory with only a single object, then this identity becomes the classical
Pascal identity.

We say that a category C is directed if for any objects A and B, for
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some object C there exist monomorphisms A ~ C and B + C. What LEEB proves

is the following:

THEOREM. (LEEB) . If C Zs Ramsey and directed, then Tnees (C) is Ramsey and
directed.

The proof uses the Ramsey property for C, together with the standard
"product" argument, also used to prove (among other things) the result of
GALLAI mentioned in the previous section.

A related and less complicated result, using the same basic techniques,

is that if C is Ramsey and directed, then so is 01d(C).
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