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INTRODUCTION

Let 7, denote the class of all trees* with »n edges and denote by
s( 7 ,) the minimum number of edges a graph G can have which contains
all Te J, assubgraphs. In a previous paper [2], two of the authors es-
tablished the following bounds on s(J n):

1
14—
(1 %nlogn<S(,9‘n)<n T Toglog n

where n is taken sufficiently large. In this note, we strengthen the upper
bound on s( .9 n) considerably. In addition we also consider the same
problem in the case that G is restricted to be a tree, with s,(7,) de-
noting the corresponding minimum number of edges. Surprisingly, we show
that 5,(7 ) does not grow exponentially in »n, answering a question in
[2]. It is annoying, however, that at present we cannot even show that
s,(7,) must exceed n2te for large n.

*The reader may consult [1] or [3] for any undefined graph-theoretic terminology.
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W-SUBTREES OF A TREE

Before establishing new bounds on s(J n) and s (7 n), we first re-
quire a result concerning the decomposition of trees.

Let W be a nonempty set of vertices of a tree T. By a W-subtree
of T, we mean a subtree T' of T consisting of one of the components
C formed from T by the removal of all the vertices of W, except for
those vertices of W adjacent to some vertex of C (and the edges joining
them).

Example.

%ff% 5

14 14 v 14

W= {u, v} W-subtrees of T
(a) (b)

Fig. 1

As usual, we let || G|l denote the number of edges of a graph G.

Lemma. Let w be a nonnegative integer. Then if o is sufficiently
large, any tree T with at least a+ 1 edges kas a subset of vertices W
with |WI<w+ 1 so that for some set ¢ of W-subtreesof T we have

@  a< 2T (1+(3)")a

T'ew

Proof. For w= 0, thisis a result in [2]. Assume w= 1. We know
that if « is large enough then for some vertex u there is a set ¢(u) of
{u}-subtrees of T such that
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3) a< 2 AITI<2

T'e€(u)
If
b5
2T I<3a
T'€e(u)

then the lemma holds for w= 1. Hence, we may assume

%a< 2 ITN< 20

T'ee(u)
Let T 1 be the subtree of T formed by taking the union of all T' € % (u).
Again, for « sufficiently large, there exists a vertex v of T, so that for
some set ¢ (¥) of (v)-subtrees of T1 , we have

43 Z ” 2C(

= NI < 5.

3 T"E%(v) 3

Consider the set #'(v) all of {v}-subtrees of T, which are not in ¢ (v).
Then

a< 2 ITI<Za

T'ee'(v)

witn

However, a {v}-subtree of 7, isa {u, v}-subtree of T. This proves the
lemma for the case w = 1. The inductive proof of (2) for general w fol-
lows very similar lines and will not be given.l

AN UPPER BOUND ON s(7,)
Theorem 1.
s(7,)=0(nlogn (log log n)?).

Proof. For p > 0, let us define the graph Gw’ p 8 follows. Gw,o =
=K, 1, the complete graphon w + 1 vertices. For p> 0, Gw’p will
denote the graph formed from XK and two disjoint copies of Gw’ p-1
by placing an edge between each vertex of K, and each vertex of each

of the copies of G, p—1 (see Figure 2).
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Fig. 2

Simple inductive arguments show that |G pl = 0O(w2?P) and
I GW’ p | = O(w? p2P) (where | G| denotes the number of vertices in G).
It is also not difficult to see that Gw P contains all trees with at most

B
1+ (%)w

edges. For p = 1, the expression is less than 2 and the claim is trivial. For
p > 1, application of the preceding Lemma with

a1 2+(%)w],,_1
(3" L+ @)

guaranteesaset W of w+ 1 vertices (which may be assigned to the ver-
tices of K, , in G, ) and a decomposition of the W-subtrees into
two classes, each having at most

2+ (%)”]"“

1+ (%)w

edges (which may be assigned to the two copies of Gw’ p—1 in Gw’ p).
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If we now choose g = [%ggz—zn] and w= [ ] we find that
log 5
2

IG, oIl =O(nlogn (log log n)?).
Furthermore, a simple calculation shows that

2+ (3)
1+ (%)W

w.q
] »20f1 -

so that G q contains as subgraphs all trees with at most n edges.i

o —

(%)w]q >24- 1>y

TREES CONTAINING ALL SMALL TREES

We next turn our attention to the case in which G is restricted to
be a tree. As mentioned in the introduction, it was asked in [2] whether
or not s,(J n), the corresponding minimum number of edges in this case,
must grow exponentially in n. This is settled by Theorem 2.

Before presenting this result, we first list the values of s ( n) for
n<7. We also show trees which produce these values (see Fig. 3). The
corresponding proofs for these results are straightforward (using degree
sequence considerations) and are omitted.

n Sg'('g.'n)
1 1
2 2
3 4
4 6
5 9
6 13
7 17
Table 1
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77 ,) ST XP 302

for n sufficiently large.
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Proof. Let us consider a family of rooted trees G_(x) with a root
at some vertex of degree 1 which contains as subgraphs all rooted trees
on at most x edges which have a root at some vertex of degree 1. For

1<k<n, let G n;l

(as shown in Fig. 4) by identifying all the r, asa single vertex r* and
adjoining aroot r, of degree 1 to r*. We note that G(x) = G(n) where

n is the integral part of x.

have as its root r,. Form the graph G(n)

G(n)

Fig. 4

It is easy to see that if f satisfies

{x]
= = x — 1
@ > 2 ),

for sufficiently large x then
%) I G(m)ll < fln).
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We claim that it will suffice to have f satisfy

©  foo> - D+ 2f(EED

in order for (4) to hold. For (6) implies -

fX)=fix— 1)+ Zf(xgl] >

> for - D+ 27 (250 + 47252 »

>fix = D+ 27(250) + 4F(EFD) + 87X T) >

[x]

> 3 AR > AR,

A straightforward computation now shows that the choice

logzx
f(x) — e2 log2

satisfies (6) for x sufficiently large.
Let G(x) be a graph as shown in Figure 5.

It is immediate that G(x) ocontains all T € J . as subgraphs and
we have

N 212 (log n)?
57 ) S UG < == - exp (m) '

This proves the theorem.l

Let s7(7,) be the minimum number of edges a rooted tree can
have which contains all rooted trees of n edges as subgraphs. Of course,
the inequality

sAT )< sAT

)

is immediate. In fact, we now show that if s,(7 ) grows polynomially
in n, then so does s;( T )

n



(r'(\')

Fig. §

Theorem 3.
s ( J"n) < s,f(j,,) < 5,( .9"') . (sy.(fn) + 1).

Proof. Let G, be a tree with s5,(7,) edges which contains all
Te 7 , as subgraphs. Let G,(v), ve G,, be a rooted tree which has
the same structure as G, and which has v as its root. Now, form the
rooted tree f, (as shown in Fig. 6) by identifying all the roots v in
G,v) for ve G,.

It is easily verified that H, contains all rooted trees with n edges
and satisfies

SHT IS NH N <5,(7 )s,(T )+ 1)

This proves the theorem.ll
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CONCLUDING REMARKS
As remarked earlier, the best known lower bound for s(J n) is

%n log n which is not too far from the upper bound of
O(n log n (log log n)?) of Theorem 1. Perhaps the lower bound is the cor-

rect order of magnitude. Unfortunately, the only lower bound presently
known for s,(7,) is rather weak. By considering the possible locations
of the vertices of degree 1 of the T€ 7, it can be argued that

s AT ) > cn?
for some ¢ > 0. It seems likely that

sAT )

n*

—> oo

for any fixed k.
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