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INTRODUCTION

Let G be a finite, connected graph* with vertex set V = V(G).
For vertices v, v' in V, the distance in G between v and v', i.e.
the minimum number of edges in any path between v and v', is denoted
by dG(v,v'). For the set S = {0,1,*}, define the distance d*(s,s')

between two r-tuples s = (sl,sz,...,sr) ¢ST and s' = (si,sé,...,s;) by

T
d*(s,s') = d(s, ,s))
kzl k’7k

where

1if s; = o, =lors, =1

5'
d(sk,si) = { k

0 otherwise.
A mapping A : V-8 is said to be a valid addressing of G if
(D dG(v,v') = d*(A(v),A(v")), all v,v' eV,

Finally, the least value of r for which a valid addressing A : y—sT

exists for G is denoted by N(G).

The quantity N(G), which originally arose in connection with the
investigation of certain data transmission schemes [ 7] has the subject
of several recent studies [ 1], 2] , [ 37, 4] s [ ] . A particularly
appealing, though apparently "difficult, conjecture is that for all G,
the following upper bound on N{G) holds :

(2) N(G) <n-1

where n denotes |G§ s the number of vertices of G, It is known 19 s
3] , [4] that (2) holds when G is any complete graph, any complefe

bipartite graph, any tree, any cycle, any distance 2 graph and for

several classes of graphs formed from smaller graphs satisfying (2).

In this note we show that (2) also holds for all graphs which
have certain rather simple "strongly embedded" subgraphs, called ske-
letons . While the general validity of (2) for all connected graphs
G remains open, the results given here may provide the first step in
an inductive approach to this question.

A subgraph H of a graph G is said to be a skeletonofa provided :

* For any undefined graph-theoretic terminology, see [6 ]



(i) For all veV(G), either veV(H) or there exists v'e V(H)
with dG(v,v') = 1.

(idi) For all v, v'eV(H), dH(v,v') = dG(v,v').
Note that any skeleton of G must be an induced subgraph of G.

In Fig.1l, we illustrate a graph G and a skeleton H of G.

G a sekleton of G
(a) Fig. 1 (b)

The remainder of the paper is concerned with showing that G satisfies
(2) whenever G has a skeleton H which is either a complete graph, a
path or a star. In order to do this, we consider an equivalent problem
involving the decomposition of a certain quadratic form associated
with G.
The quadratic form Q(G)

Let V = {xl,xz,...,xn} denote the vertex set of G. The quadratic
form Q(G) is defined by

Q(G) = E . dijxixj

l<icj<n

where dij = dG(xi’xj)’ 1<i, j<n. The following result appears in[4] .
Fact. N(G) <r if and only if Q(G) can be written as

T
ey = § €] x) C ] x3)
k=1 ieA jeB,
where Ay s Bk£{1,2,...,n} .



In order to prove that (2) holds for the various graphs under
consideration, we shall always make use of this equivalent formulation.

COMPLETE GRAPH SKELETONS

Theorem 1. If G has a skeleton which is a complete graph then G satis-
fies (2).

Proof : Let N denote the number of vertices of G and let H be a skele-
ton of G which is a complete graph on the vertices x X of G where

5o
n<N. For H, the quadratic form Q(H) may be writterl1
Z n-1 n-1
Q(H) = Eoin x;X; = izl I N izl AB. .
n
where Ai = X5 and Bi = j—§+1 x. for 1<i<n-1, We next modify Ai and

Bi to form Ai' and Bi" l1<i<n-1, as follows :

For each vertex xeG\H, i.e., x is a vertex of G which is not a vertex
of H :
(i) 1f dG(x,xn)
we add x to Bi'
(ii) I1f dG(x,xn) = 2 then let m denote the largest index such
that d(x,xm)

with d(x,xi)

1 then for each i, 1<ig<n-1, with d(x,xi) = 2,

1. Add x to Am and, for each i, 1<i<n-1,
2, add x to B,

We claim that for a suitable choice of C(x) = (xj.+.. .+xJ. ), and

xeG\H, we can write Q(G) as 1 s
n-1

(3) Q(G) = _[ AlBY + ) x-C(x)
i=1 xeG\H

Since the expansion (3) has only n-1 products then (2) will hold
for G. To see that {3) is valid we must check several cases.

If xeG\H and x; €H then by the above rules XX, appears in

n
2 Ai'B{ if and only if d(x,xi) = 2. Thus, if we define each C(x) to
i=1

n

contain the terms z xi then these distances will all be correct.
i=1

If x and x' are distinct vertices of G\H, let S and S' be the



4

sets of vertices of H at distance 1 from x and x', respectively, It
follows from the definitions of A{ and Bi that the terms x and x' can
appear on opposite sides in exactly one pair of terms A{B{ if Sns'=¢,

and, in any case, in no more than one pair.

The distance dG(x,x') may be 1,2 or 3. If dG(x,x') = 3 then

n-1
SNS' = @, the sum Z AiBi contains the term xx' exactly once and so,
i=1
by defining C(x) to contain x' and C(x') to contain X, we have taken
care of dG(x,x') in Q(G) in this case. If d(x,x') = 1 or 2, x and x'

can appear on opposite sides in AiBi at most once and the terms C(x)

and C(x') can clearly be defined appropriately to match dG(x,x').

Thus we see that in all cases, the coefficient of xx' in Q(G) is
exactly dG(x,x') for all vertices x, x' of G. This proves the theorem,

PATH SKELETONS

Theorem 2. If G has a skeleton which is a path then G satisfies (2).
Proof : As before, we assume G has N vertices and that H is a skeleton
of G which is a path (xl,xz,..,xn), i.e., so that the only edges in H
are {xi,xi+l} for 1 <ix<n-1 where we assume n<N, If the edge

e = {xi,xi+1} is removed from H, the vertices of H are split into two
disjoint sets A(e) and B(e) where A(e) = {xj:lgjgi}, B(e) = {xj:i<j5n}.
It is easily checked that

a = 3 ( > x> (X;B(e)x->

e=edge of H ° xeA(e)

We make the following definitions for yeG\H :

h(y) = least integer such that dG(y,xh(y)) =1,
a(y) = greatest integer <h(y) such that

d d , .

¢ %a(y)) 5 96 y) Xagy))
b(y) = least integer > h(y) such that

36X, (y)) < 96 (y) Fp () -

(It can happen for some y that a(y) or b(y) does not exist).

For e = {xi,xi+1}, define A'(e) and B'(e) as follows :



First, A(e)S A'(e) and B(e)S B'(e) for all e.

Also, if yeG\H, xh(y) €A(e) and i # b(y)-1 then yeA'(e).
Similarly, if yeG\H, xh(y) eB(e) and i # a(y) then y eB'(e).

Write

E A'(e)B'(e) = ) d'(x,x")xx' .
e=edge of H x,x!

As in the proof of Theorem 1, it will suffice to show that
dG(x,x') for x,x'eH,

(4 dG(x,x') 2d"(x,x") > dG(x,x')—l for xeH, x'eH, x'eG\H,
dG(x,x')—Z for x,x' e G\ H,

For if this is the case then by adjoining a sum of the form

z : (y)C(y) for suitably chosen C(y) we can bring all the deficient
yeG\ H
coefficients d'(x,x') up to their required value of dG(x,x').

(1) If x,x'eH then
dg(x,x') = d'(x,x")
is immediate from the definition of A'(e) and B'(e).

(ii) I1f xkeH, y € G\ H then certainly
4" (v>x) £dg(x (py5%)

since y and xh(y) are never placed on opposite sides of a term

A'(e)B'(e). Also, it is immediate that

] -
4 (y>xq0 2450 (yyo%) - 1
since we cannot have y missing from a term containing xk(y) twice while

is in the opposite term., Hence, (4) could only fail if either
X PP
G(xh(y)’xk) - G() ? k) + 1

d'(y,xk) = dG(xh(y),xk) -1= dG(y,xk) - 2.

However, a careful consideration of the various possibilities (i.e.,
a(y) and/or b(y) does not exist, k <a(y), a(y) <k <k(y), etc.) shows
that none of these violations can occur and so, (4) holds in this case,

a'(y,x)

or

(iii) If y,y' eG\H then a similar computation verifies (4) in



6

this case as well.

This completes the proof of Theorem 2.

CONCLUDING REMARKS

The following result can be proved in much the same way as
Theorem 2,

Theorem 3. If G has a skeleton which is a star then G satisfies (2).

The reader may find it instructive to describe the appropriate
modifications of the A(e) and B(e) for the decomposition of Q(H) which
will work in this case,

It seems likely that a similar result holds as long as the skele-
ton of G is an arbitrary tree although at present we do not see how to
do this. More generally, it may be true that one can show that if a
graph G has a skeleton H satisfying (2) then G itself also satisfies
(2).
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