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A REMARK ON STEINER MINIMAL TREES

BY

R.L. GRAHAM AND F.K. HWANG

Abstract. For a finite set of points X in the plane, the Steiner
minimal tree for X is the shortest network containing as nodes the
points of X and possibly some other points as well. In this note we
show that the ratio of the lengths of the Steiner minimal tree for X

and the minimal spanning tree for X can never be less than 1///3 .
This result is also valid with X contained in any xn-dimensional
Euclidean space,

Introduction. The general problem of finding Steiner minimal
trees on a set of points is a very old and interesting problem [22,
18, 13] and one which has been of considerable interest in network
decign and operations research. For general background on the
problem, the reader is referred to the excellent survey of Giibert
and Pollak [13].

In this note we shall establish a new lower bound for the ratio
of the length of a Steiner minimal tree on a set of points in #-
dimensional Euclidean space to the length of the minimal spanning
tree on this set (see the following section for definitions). In
particular, we show that this ratio can never be less than
1/v/3 = 5771---. It was previously known [19] to be bounded by
1/2. It is conjectured that for the plane the correct bound is
V'3 /2 = .8660---.

DEFINITIONS. We begin by defining our terms.

If X is a finite subset of a metric space, a spanning tree T(X)
on X is simply a collection of pairs {x;, x;} (called edges) satisfy-
ing: |

For any x, ' €X, £ 2", there is a unique sequence of dis-
tinct vertices P(x, &) = (&0, &1,---, &) with &y =2, 2 = 2" and
fx:, i1} €T(X) for 0<i<k.
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The length of T(X), denoted by I(T(X)), is defined by
(TX) = > d= 2,
(%, 5eT(X)
where d(x, ') denotes the distance between & and z". T*(X) is
said to be a minimal spanning tree on X if T*(X) is a spanning
tree on X and

HTY(X)) < HT(X))

for all spanning trees T(X) on X

Finally, S(X) is said to be a Steinsr tree on X if for some
YO X S(X)=T(Y) isaspanning treeon Y. If I(S*(X)) <I{S(X))
for all Steiner trees S(X) on X, then S*(X) is said to be a Steiner
minimal tree on X.

If v is a vertex of S*(X) which does not belong to X, then v
is called a Steimer point of S*(X). We remark that in any Euclidean
space, a Steiner point of S$*(X) must be incident to exactly three
edges of S*(X), each of which meets the other two at angles of
120° (cf. [23]).

The main result. Let E” denote n-dimensional Euclidean space.
THEOREM. If X C E* is finite then
(1) HS* (X)) /M T*(X) =21/v' 3.

Proof. If |X|, the cardinality of X, is small then the theorem
is known to hold for X. This is shown for |Xj =3 in [13] and
(X] =4 in [20] (Kallman [17] studies the general case in the
Euclidean plane allowing at most one Steiner pcint) where in both
cases the stronger lower bound of 1+ 3/2 is proved. Henceforth,
we may assume |X|=m>4, Assume that (1) holds for all X’ C E*
with [X'|<m. Suppese S*(X) is not a full Steiner tree (one con-
taining m — 2 Steiner points). Then we can decompose it into a
union of full Steiner trees [13] and by induction the theorem is true
on each of the subsets of vertices. Since the union of the minimal
spanning trees on the subsets of vertices is a spanning tree on X
(though not necessarily minimal), the theorem is a fortiori true.
Therefore, we may assume that S*(X) is a full Steiner tree. Thus
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there must exist a Steiner point which is adjacent to two. points
and x,€X (see Figure 1) each of degree 1.

FIGURE 1

It is also known (see [13]) that the angle between the edges
{x, ¥y} and {2, ¥} must be 120°. Hence, assuming (without loss of
generality) that d(x;, ¥) = d(x., ¥), an easy calculation shows that

(2) d(z, ) <V 3 dlxy, v) .
Let X' =X— (x4, X' =X v{y}. By induction,
(3) (1/v/3) I(T* (X)) < I(S* (X)) < US* (X))

<USH(X)) — d(z, ¥)
since S*(X) — {z,, ¥} is a spanning tree on X''. But
I(T*(X)) <d(xz, x) +1(T*(X"))
since T*(X')V {xy, 2.} is a spanning tree on X. Hence, by (2) and
(3),
(1/v/8) UT*(X)) < (1/v' 3) d(xy, ) + (1/V 3) U T*(X'))

< d(zy, y) + U8 (X)) — d(xy, ¥)
= I(S*(X))

and the induction step is completed. This proves the theorem. |

REMARKS. Examples of sets X are known [4] in a high-dimen-
sional Euclidean space for which
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HS*(X))/U(T* (X)) — (3/2)172/(2* — 1) = 66984 .

A well-known conjecture(*) [12] asserts that for XC E? the following
inequality holds:

Conjecture: 1(S*(X))/I(T*(X)) > v 3/2.

If true, the conjecture would be best possible, as the set consisting
of the three vertices of an equilateral triangle shows.

At present no efficient method is known for computing a Steiner
minimal tree on a Jarge general set X, even when XC E? (cf. [3,
5, 6, 8,9, 18]). It has recently been shown [10] that even the deter-
mination of Steiner minimal trees in the Euclidean piane is at least
as hard as any “NP-complete” problem (see [2] for an explanation
of this term) and so probably one will have to settle for efficient
heuristics for finding relatively short Steiner trees. Recent results
of Shamos [22] show that if XC E?, |X| = m, a minimal spanning
tree on X may be constructed in O(mlog m) steps. By the result
of this paper, this will bring us to within a factor of 1/v 3 of
1(S*(X)) (which is not too bad in this type of problem).

A problem ciosely related to the one considered in this note is
the Steiner minimal tree problem with the 7ectilinear (or “Manhat-
tan”) metric, denoted by dr. For & =(&1, -+, &), ¥ = (%1, -, y,,) eE™”,
this is defined by

”

dr(x, y) = > 1zs— ¥l .

k=1
It has been proved by Hwang [16] that for XC E?, we always have
Ir(S*(X))/Ir(T*(X)) > 2/3

(where the subscript R denotes the corresponding quantities using
the rectilinear metric) and that this bound is best possible. It may
be that the corresponding bound in E* is #/(2s — 1) but this has
not yet been established. Efficient special-case rectilinear Steiner
minimal trees are discussed in [1]. It has been shown by Garey and

(1) One of the authors is currently offering $100 for a proof or disproof of this
conjecture,
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Johnson [12] that the rectilinear Steiner minimal tree problem in E?
is NP-complete.

Analogous results have recently been proved [21] for the “travel-
ling salesperson” problem. In this case an O(#zlog %) algorithm can
be used to construct a Hamiltonian circuit on a set XC E* with
IX| =m which has length guaranteed always to be at most twice
the minimal one. It is conjectured by Tarjan [24] that no efficient
(= polynomial-time bounded) algorithm can always come to within
a factor of 2 — ¢ of the optimal solution, for a fixed ¢> 0.

In a similar vein, Garey and Johnson [11] recently showed that
if, for some fixed ¢ >0, a polynomial algorithm can always deter-
mine the chromatic number of any graph to within a factor of
2 —'¢, then in fact the exact chromatic number can also be deter-
mined in polynomial time, a highly uniikely possibility in view of
the NP-completeness of the problem of finding the chromatic number
of a graph. They conjecture that a similar result holds when 2—¢
is replaced by any fixed factor «.

Added in proof. Tarjan’s conjecture has recently been disproved
by N. Cristofides, who has constructed a polynomial bounded algorithm
for the travelling salesperson problem which always comes to within
a factor of 3/2 of the optimal solution. We also point out thé.t it
has very recently been shown by F.K. Hwang and F.R.K. Chung
that for the case of E?,

;((fft((%)) = 2v/3+2 —31/7 +2v3 = 74309 - -,
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