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ABSTRACT

In this note, we show how the determinant of the distance matrix D(G) of a weighted,
directed graph G can be explicitly expressed in terms of the corresponding determinants for
the (strong) blocks G; of G. In particular, when cof D(G), the sum of the cofactors of D(G),
does not vanish, we have the very attractive formula

det D(G) » det D(G;)
cof D(G) % cof D(G,)

We consider finite directed graphst G in which each (directed) edge e
has associated with it an arbitrary non-negative “length” w(e). For ver-
tices v, v; of G, the distance d; from v; to v; is defined by

di; = min w(P(v;, v;))
P(v;,v5)

where P(v;, v;) ranges over all directed paths from v; to v; and w(P(v;, v;))
denotes the sum of all edge-lengths in P(v;, v;). We shall assume that G is
strongly connected so that d; always exists. The distance matrix D(G) of
G is the square matrix which has d; as its (i, j) entry. This matrix, while
not as common as the more familiar adjacency matrix of G, has neverthe-
less come up recently in several different areas, including communication
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network design [5], graph embedding theory [3, 6, 7], molecular stability
[9, 10], and network flow algorithms [1, 2].

In this note we study det D(G), the determinant of the distance matrix
of G. In particular, we derive an expression for det D(G) which depends
only on the (strongly connected) blocks of G and not on how they are
interconnected. This gives perhaps the most natural explanation of the
previously known result (see [5]) that for a uniform, undirected tree T,
on n vertices. (i.e., all edges have length 1 in either direction),

det D(T,)=(—-1)""Y(n—1)2""2, (1)

independent of the structure of T,. We also establish a conjecture of one
of the authors [9] for graphs having as blocks either cycles or single edges.

Before proceeding to the main result, we first require several prelimi-
nary ideas. For a square matrix A, let cof (A) denote the sum of the
cofactors of A (cf. [4]). Form the matrix A by subtracting the first row
from all other rows, then the first column from all other columns and let
A, denote the cofactor of A in position (1, 1).

LeEMMA

cof (A)=A11 (2)

Proof. Let J be the matrix of 1’s having the same order as A. If we
write

det (A+x])=CQ+C1x, (3)
it is obvious that
cof (A)=c;,. 4)

But if we let E;; denote the matrix with 1 in position (1,1) and 0
everywhere else, then

det (A +xJ) = det (A +xJ) =det (A + xEy,). (5)

Using (3) and (4), (5) implies (2). 1

We may now state our main result. A block of a graph is defined to be
a maximal subgraph having no cut points.

Tueorem. If G is a strongly connected directed graph with blocks
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G, Gy, -+, G, then
cof D(G) =[] cof D(G))
i=1

det D(G) = Z det D(Gy)[ ] cof D(G)).

j=i
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(6)

Proof. We may select G; to be an end block, i.e., a block containing
only one cut point of G (which we take to be labeled 0). Let G¥=
G —(G;—{0}) be the remainder of G. Note that the cut point 0 is not
removed from G¥. We will first verify a decomposition in the form of (6)
for G, and G¥. The theorem will then follow at once by induction by
breaking down G¥ successively until its blocks G, - - -, G, are obtained.
Assume V(G,)={0,1,---, m} and V(GF)={0, m+1,-- -, m+n}. Let

fa

0 a, " Qm 0 fl

b, g1
D(Gy=| - E . D(GH=

bm &

Thus,

Since det A =det A then

0 a f
det D(G)=det(5 E—(b +a;) 0 )
g 0 H-(g+f)

= det (Q—

L a o 4 f
; E—(bi+aj)>det(H (& +£)

+det <%'#_i+ff)) det (E —(b; + a;))

=det D(G,) cof D(GT)+det D(G¥) cof D(G,) (7)
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by the lemma. It also follows from the lemma that
E—(bi+a) | 0
o [H-(s +ﬁ-))
=det (E—(b;+a;)) det (H— (g + )
= D(Gl)n D~(G=1k)u
= cof D(G,) cof D(G7). (8)

cof D(G)=det (

This completes the proof of (6) and the Theorem is proved. §

When none of the cof D(G;) vanish, we can write det D(G) in the
alternate form

det D(G) _ ¢ det D(G))
cof D(G) = cof D(G;)

&)

For the graph G, consisting of a single undirected edge of length 1 we

1
have D(Go)=(? 0), cof D(Gy) =—-2, det D(Gp)=~1. Thus, for a tree

T, with n vertices and n—1 undirected edges of unit length we have

cof D(T,)=(cof D(Go))" " =(-2)""",

det D(T,) = cof D(Ty,) i det D(Go)

). L
;=1COfD(Go)=(—2) (n=1)

2
which implies (1).
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