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THE COMPLEXITY OF COMPUTING STEINER MINIMAL TREES*

M. R. GAREY, R. L. GRAHAM anD D. S. JOHNSON¢Y

Abstract. It is shown that the problem of computing Steiner minimal trees for general planar
point sets is inherently at least as difficult as any of the NP-complete problems (a well known class of
computationally intractable problems). This effectively destroys any hope for finding an efficient
algorithm for this problem.

1. Introduction. Let X denote a finite set of n points in the plane. A
spanning tree T(X) for X is any tree structure that includes every point of X and
consists solely of straight line segments (called edges) having both endpoints in X.
The length of T(X), denoted by I(T(X)), is defined to be the sum of the
(Euclidean) lengths of the edges of T(X). If T%(X) is a spanning tree that satisfies
I(T*(X))=I(T(X)) for all spanning trees T(X) for X, then T*(X) is called a
(Euclidean) minimal spanning tree for X. If X < Y, any spanning tree T(Y) for Y
is called a Steiner tree for X. It is often possible to choose a superset Y of X in such

a way that [(T*(Y)) <l(T*(X)). If
1) (THY)=sUT*Y")

for all sets Y’ containing X, then the tree T*(Y) = S*(X) is called a (Euclidean)
Steiner minimal tree (abbreviated by ESMT) for X. An example is shown in Fig. 1.
Minimal spanning trees and Steiner minimal trees arise frequently in prob-
lems concerning network design [6], optimal location of facilities [17], and
component placement on circuit boards [10], to name a few applications, and
considerable effort has gone into developing efficient algorithms for constructing
these trees. For constructing a minimal spanning tree on 7 points in the plane,
procedures are now known [16] that require at most O(n log 1) operations (more
precisely, O(b°n log n) where b is the maximum number of bits used to express a
coordinate of a point in X, a bound which takes account of the complexity of
arithmetic operations). In contrast, no proposed algorithm for constructing an
ESMT for X has been shown to require fewer than exponentially many (in terms
of n and b) operations in the worst case. In fact, this was not even known to be a
finite problem until 1961 [14]. Subsequent work by Cockayne and Schiller [4],
Boyce and Seery [3], and others has made it feasible to compute $*(X) for general

X T{X) ™ X) s*(x)
F1G. 1. Examples of tree types
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sets X having up to about 15 points. However, these methods are hopelessly
inadequate for sets X with 50 or 100 points, and it appears that the ESMT
problem may well be inherently intractable.

Thus, it is natural to ask whether the ESMT problem is “NP-complete.” As
. described in [2], [12], [13], the NP-complete problems form a wide and varying
class with the following important properties:

(A) No NP-complete problem is known to be solvable by a polynomial

time-bounded algorithm.

(B) If any one of the NP-complete problems could be solved by a polynomial
time-bounded algorithm, then all NP-complete problems could be
solved by polynomial time-bounded algorithms.

(Here the execution time of an algorithm is expressed as a function of the number
of bits required to express the input.) The class of NP-complete problems includes
many members notorious for their computational difficulty, such as the traveling
salesman problem, the graph chromatic number problem, tautology testing, and
clique finding,. It is widely believed (though not yet proved) that all its members
require exponential time solution algorithms. Hence, NP-completeness is a
strong argument for inherent intractability.

In this paper we shall show that the ESMT problem is at least as difficult as
any of the NP-complete problems. For technical reasons, we will not show that the
ESMT problem is itself NP-complete. Indeed the ESMT problem is perhaps not
the problem we should show to be NP-complete. As defined, it involves idealiza-
tions that separate it from the real world of computing. The key observationis that
computers cannot manipulate infinite-precision numbers; all numbers in a com-
putation are presented with a limited number of bits and hence are rational. By
suitable scaling we may even think of them as integers. Of course, a computation
can manipulate symbolic irrational numbers, such as “7r”’ or “\/5”, but whenever
an expression involving these symbolic irrationals is evaluated, they must be
rounded to rational numbers in order for the computation to terminate.

There are two sources of irrational numbers in the ESMT problem. The first
is that, even if all points in X have integer coordinates, it is possible that in the
Steiner minimal tree $*(X) = T*(Y) one or more points of Y may have irrational
coordinates. A second and more crucial source of irrationality is the Euclidean
metric, where the distance d(x, y) between two points x = (x4, x,) and y = (y1, y2)
is defined by

d(x, y) = (51— y)*+ (xa— y2)) .

Since the length of an edge may be irrational, even if both endpoints have integer
coordinates, the length of a particular tree can be a sum of many different
irrational numbers. This might make it difficult to compare the length of two
different trees, since no polynomlal bound is known on the accuracy required for
correctly making the comparison.

In view of these comments, one might wonder whether the only source of
difficulty in the ESMT problem involves computing with irrational numbers. In
this case a proof that the ESMT problem is difficult would have little practical
significance, since one would be perfectly willing to specify in advance the
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precision with which computations are to be carried out. To avoid this criticism,
we shall modify the ESMT problem in a manner more appropriate to real-world
computing and it is this modified problem that we prove to be NP-complete. It will
follow from our proof that the ESMT problem itself is at least as difficult as any
NP-complete problem and that irrational numbers are not the sole source of its
difficulty. Furthermore, in the unlikely event that all NP-complete problems can
be solved with polynomial time algorithms, we will know that Steiner minimal
trees can be determined to within any desired accuracy in polynomial time, even
though the ESMT problem might still be hard.

There are two points at which we introduce approximations into the problem.
First, we require that all points of X and the additional points of Y'—X have
only integer coordinates. Second, we replace the Euclidean metric by a ‘“‘dis-
cretized” Euclidean metric in which the length of an edge joining two points x and
y is taken tobe d'(x, y) =[d(x, y)] (where [a] is the least integer not less than a).
The discrete Euclidean length I'(T) of a tree T is then the sum of the discrete
Euclidean lengths of its edges.

Thus we obtain a discrete version which, by appropriate scaling, can be made
to approximate the original ESMT problem to within any desired degree of
accuracy and which accurately reflects the manner in which Steiner minimal trees
must be computed in practice. Stated as a feasibility problem, as required for
proofs of NP-completeness [2], [12], [13], it becomes the following discrete
Euclidean Steiner minimal tree (DESMT) problem:

Given a set X of integer-coordinate points in the plane and a positive

integer L, does there exist a set Y =2 X of integer-coordinate points

such that some spanning tree T for Y satisfies I'(T)=L?

It can be shown that this feasibility question can be answered in polynomial
time if and only if the corresponding optimization problem can be solved in
polynomial time.

The main result of this paper is that the DESMT problem is NP-complete.
We prove this by reducing to it a known NP-complete problem, that of ‘“‘exact
cover by 3-sets”. However, having emphasized all the practical reasons for
directing our attention to the discrete problem, we must now point out that it will
be more convenient in our proof to work in the original, infinite-precision
Euclidean domain. This allows us to simplify the arguments by using a number of
geometrical lemmas about the ESMT problem which would be more difficult to
prove for the DESMT problem. Thus the.reader should be warned that our basic
construction will involve points having fractional and even irrational coordinates.
However, we shall prove a result strong enough to insure that the scaling and
rounding needed to translate our construction back to the discrete case cannot
change the outcome of the comparison to L.

We begin with a discussion of some elementary properties of ESMT’s and
then proceed to the more powerful lemmas and our construction.

2. Preliminaries. When there is no danger of confusion, we shall usually
abbreviate T(X), T*(X), and $*(X) by T, T*, and $*. If T is a spanning tree for X
and u, v € X, the (unique) path between u and v in T will be denoted by Pr(u, v).
The maximum length of an edge in Pr(u, v) is denoted by m(Pr(u, v)). The
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maximum edge length in T is denoted by m(T). The following result appears in

[8].

LemMa 1. For any set X and points u, v € X,
2 m(Pr(u, v)) Z m(Pr+(u, v)) Zm(Ps+(u, v)).
Proof. Suppose there exists a spanning tree T for X and u, v € X such that
m(Pr(u, v)) <m(Pr(u, v)).

Then there exists an edge e of Pr«(u, v) which is longer than every edge of
Pr(u, v). If we delete this edge e from T%, the resulting set consists of exactly two
connected components. It is easily seen that the addition of some edge e’ from
Pr(u, v) must rejoin these two components, forming a spanning tree 7" for X with

UT)Y=UT*—l(e)+1(e")
S UT*) = m(Pr+(u, v)) + m(Pr(u, v))
<I(T*

which contradicts the definition of a minimal spanning tree T* for X. This proves
the first inequality in (2). The second inequality follows similarly. [

Let $* = T#(Y) be a Steiner minimal tree for X with | Y] as small as possible.
A point x € X is called a regular point of $*; a point s € Y — X is called a Steiner
point of $*, The following basic results about such Steiner minimal trees are easily
proved [7].

Fact 1. Every Steiner point s of $* has degree 3 and each of the three edges of
S* incident to s meets the other two at angles of 120°.

Fact 2. If X has n points, then $* has at most n —2 Steiner points.

Fact 3. If $* has any Steiner points, then $* has some Steiner point adjacent
to at least two regular points of $¥*,

Fact 4. No two edges of $* that share a common endpoint meet at an angle of
less than 120°.

Fact 5. Two edges of S$* intersect only at a common endpoint.

3. Geometrical considerations. Before proceeding to the main construction,
we shall first prove several useful geometrical results concerning Steiner minimal
trees (cf. [8]). Define the semi-infinite strip W (shown in Fig. 2) by

W={x,y):lx]=1,y=|x|/V3}
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Lemma 2. Let S* be a Steiner minimal tree for X with m(S*) =1 and suppose
s, =10, 0) is a Steiner point of S*. Then for some regular point x of S¥,

Pg«(s0, x) = W.

Proof. Since so= (0, 0) is a Steiner point, let us extend each of the three edges
of $* incident to s, infinitely in both directions, forming six directed half-lines all
emanating from so. We denote these by L,, 0=i =S5, where the clockwise angle
between L; and L;., is 60°. We may assume that L, is chosen in the first quadrant
so that the angle 6 between L, and the positive y-axis satisfies 0 = § <60° (see Fig.
3).

We partition W into three sets, as illustrated in Fig. 4, based on the angle 6.
W, is the set of points in W which would be moved out of W if they were
translated in the direction of Ls for a distance of 1. W, is the set of points in W
which would be moved out of W if they were translated in the direction of L, for a
distance of 1. W; is the set of points in W which would remain in W if translated
for a distance of 1 in the direction of either L, or Ls. The precise specifications are
as follows (see Fig. 4):

Wi ={(x,y)e W:x <—1+cos (6430},
W,o={(x, y)e W:x >1—sin 6},
W3= W—-(W1U Wz)
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Observe for future reference that the width of the strip W is 2 —cos (6 +30°) —
sin 6, which is at least 1, with that minimum value occurring at 8 = 30°.

We now show how to generate a sequence of points which form a path of $*
contained entirely within W. This sequence will terminate with a regular point.
The first point in the sequence is the Steiner point s, = (0, 0). In general, suppose
the sequence generated so far is (so, 51, . . . , 5;) Wwhere each s;, 0=/ =¢, is a distinct
Steiner point of $* in W and each line segment (s;, s;.1), 0=i <¢, is an edge of $*.
An inductive application of Fact 1 implies that the direction of the edges leaving
s, are all from the set {L,:0=i=5}. We use the following rules for choosing the
next point s,,; = v from those points that are adjacent to s, in $*:

If s, € Wy, choose v so that {s,, v) is an edge of $* with the same directionas L,

or Ll.
It s, € W,, choose v so that (s,, v)is an edge of $* with the same directionas L,
or Ls.
If s, € W3, choose v so that (s, v) is an edge of $* with the same direction as Ls
or L.
Note that, by Fact 1, such a v must exist and is uniquely determined. It remains
to be shown that (a) v € W and (b) vé& {so, 51, - -, 5:}.

(a) By the selection rules and our definition of W;, W,, and W, the only way
v could be outside W would be if v = (v,, v,) with |v,|=1 and v,/|v,|<1/V3. If
v, >0, this would imply that s,€ W, and (s,, v) has direction L,. If v, <0, the
implication would be that s, € W, and (s,, v) has direction L,. We shall treat only
the former case, as the latter is symmetric.

So suppose s, € W; and vZ W. Consider the unit length line segment in the
direction of L, from ¢ to d, where ¢ =(—1+cos (8 +30°), (1—cos (8 + 30°))/~/§).
Since this segment is parallel to (s, v}, is at least as long, and since ¢ is below and to
the right of every point in Wi, d must be below and to the right of v. Hence the
coordinates of d = (d,, d,) must also satisfy d,/d, <1/ V3. However, a simple
calculation yields

d, =—-1+cos (8 +30°+cos (6§ —30°),

1 1 o . o
d, N cos (6 +30°) —sin (6 —30°).
The reader may readily verify that these values satisty d,/d, =1/ V3, with equality
only at 8 = 30°, Thus we have a contradiction and v € W as desired.

(®) If ve{so, 81, s}, then it must be the case that v =s,_;, since the
Steiner tree S* contains no cycles. But this implies that (s, v) must be in the
opposite direction to {s,_1, s.). The only opposing directions that can be chosen by
our rules are L, and L. Our rules then imply that s5,_, € W, and s, € W, or vice
versa. However, this implies that the edge (s,_;, s;) is longer than 1, the minimum
possible width for W3. This is a contradiction, since (s,_1, s,) is an edge of $* and
m(§*)=1.

Thus, s, is a distinct new point of $* in W, By induction, we can continue
adding new points to our sequence until a regular point v = x € X is reached. Since
X is finite and, by Fact 2, $* can have at most |X| -2 Steiner points, the sequence
must terminate with such a point. Hence, W contains the desired path
P, S*(Sm X). a
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Let @ =0 be arbitrary and let us truncate W to form W(a) defined by
W(a)={(x, y) € W:y = a}. The preceding arguments actually imply the following
more precise result.

COROLLARY 1. Let S* be a Steiner minimal tree for X with m(S*)=1 and
suppose so=1(0,0) is a Steiner point of S*. Then for any a =0 either W(a +1)
contains a regular point of S* or W(a +1)— W(a) contains a Steiner point of S*.

If s is a Steiner point of a Steiner minimal tree $* for X and (s, v) is an edge of
S*, let H(s, v) denote the closed regular hexagonal region of side 1 which is
bisected by the line through s and v and which intersects (s, v) in the single point s
(see Fig. 5).

LemMA 3. Let S* be a Steiner minimal tree for X with m(S*)=1. Ifsis a
Steirier point of S* and (s, v) is an edge of S*, then H(s, v) contains a regular point
of S*.

Proof. Suppose H(s, v) contains no regular point of $*. By Fact 1, $* must
have edges (s, 51) and (s, s,) that lie on the boundary of H(s, v), since by hypothesis
no edge of $* is longer than 1. Also, the endpoints, s; and s, of these edges must
be Steiner points of $* since, by assumption, H(s, v) contains no regular point of
S*. Because s, and s, are Steiner points, there must exist Steiner points ¢, and ¢, of
S* such that (s, #,) and (s, #,) are edges of $* lying entirely inside H(s, v) and
which are parallel to (v, s). Finally, there must exist Steiner points «; and u, of $*
such that (¢,, u,) and (t,, u,) are edges of $* lying entirely inside H(s, v) and which
are parallel to (s, s,) and (s, s,) respectively (see Fig. 5).

For i {1, 2}, let L; denote the line passing through u; parallel to (s, s;). By
Fact 5, the edges (1, u1) and {t,, u,) cannot intersect. Hence, either u lies strictly
above L; or u, lies strictly above L, or both. Suppose without loss of generality
that u, lies above L;. We apply Lemma 2 to the Steiner point ;. Since u, (and
therefore #,) lies strictly above L, there is an orientation of the region W (with u,
playing the role of s, = (0, 0)) so that ¢, & W, ¢, € W, and s € W. By Lemma 2, there
must exist a regular point v’ of $* such that the path Pg«(uy, v’) lies entirely in W.
However, since #;, £, € W then by Fact 5, no edge of this path can intersect any of

\"
F1G.5. Theregion H(s, v)
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the edges (s1, t1), (s, $1), {5, 82, (82, t2). Thus Pg«(u;, v") < H(s, v) which implies
v" e H(x, v). This contradicts the assumption that no regular point lies in H(s, v)
and the lemma is proved. 0

For a point x in the plane, let D, denote the disc of all points at a distance of
at most 2 from x. The following corollary is an immediate consequence of Lemma
3.

COROLLARY 2. Let s be a Steiner point of a Steiner minimal tree S* for X with
m(S*)=<1. Then D, contains a regular point of S*.

Finally, consider the region P, called a probe, shown in Fig. 6. P is formed by
taking the union of a copy of W(10) together with the set of all points at a distance
of at most 2 from some point of W(10)-W(9). The point ¢(P) at the (central) 120°
angle of the probe is called the #ip of the probe.

Lemma 4. For any placement (i.e., translation and rotation) of a probe P in the
plane which contains no point of X, the tip t(P) of P cannot be a Steiner point of S*.

Proof. Suppose t(P) is a Steiner point of $* but that P contains no point from
X. By Corollary 1, since the corresponding copy of W(10) < P contains no regular
point of $* (i.e., point of X), the region W(10)— W(9) must contain some Steiner
point s of $*. By Corollary 2, some regular point x € X of $* must be within
distance 2 from s, so that x € P. This contradicts the hypothesis that XN P =
and Lemma 4 is proved. 0

(Note that the length 10 of the truncated strip W(10) is not essential for this
proof, but has been chosen merely for convenience in what follows.)

4. The configuration X(#). In this section we begin the reduction of a
known NP-complete problem to the discrete Euclidean Steiner minimal tree
problem, The problem we reduce is that of exact cover by 3-sets, abbreviated X3C,
As input to this problem we are given a family & of 3-element subsets
F,, F,, -+, F, of aset F of 3n elements, which we take without loss of generality
tobe{l,2, 3, -, 3n}. The problem X3Cis to decide whether there is a subfamily
F' < F such that

(i) distinct elements of &' are disjoint; and,

(i1) the elements of &' cover F, i.e.,

U F=F

Fe%

w(i0)-w(9)

t(P)< w(10)

F1G. 6. The probe P
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The problem X3C is known to be NP-complete, and in fact contains as a special
case the problem of 3-dimensional matching shown to be NP-complete in[12]. In
the remainder of this section we shall describe a configuration X = X(%) of points
in the plane which will serve as an intermediary in our eventual transformation of
an instance % of X3Cinto an instance of DESMT. We shall remain with X in the
ordinary Euclidean domain for quite some time, with the translation to the
discrete domain not coming until § 7, after all of the important properties of X
have been derived. We begin by assuming that both » and ¢ exceed 1, since
otherwise the X3C problem for # would be trivial.

We shall build X (%) up in stages. A basic unit in the construction is shown in
Fig. 7. This configuration is called a standard row and consists of 100 equally
spaced points lying in a straight line with adjacent points separated by a distance of
1/10. The points a and a are called the endpoints of the row (see Fig. 7(a)). We
shall denote a standard row schematically as in Fig. 7(b).

We now combine standard rows in various ways to form the next units in the
construction. In Fig. 8(a) we show a configuration Q composed of 4 standard rows.
The endpoints a, b, ¢, d, called the active points of Q, are the vertices of asquare of
side 1 and the standard rows lie on the extended diagonals of that square. We shall
call Q a square and denote it schematically as in Fig. 8(b).

In Fig. 9(a), we show a configuration R (¢) composed of 3 standard rows. The
endpoints a, b, ¢ are the active points of R(¢) and form the vertices of an
equilateral triangle with side length 1 — ¢ for some g, 0 = &£ < 1/200, to be specified
later. The three standard rows radiate out from the three vertices of the triangle
and lie on the half-lines bisecting the exterior angles of the triangle. When ¢ >0,
R(¢) is called a small triangle and is denoted schematically as in Fig. 9(b). When
€ =0, R(0) =R is called a standard triangle and is denoted schematically as in Fig.
9(c).

al e

(a) {b)

F1G.7. A standardrow
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(a) (b),
F1G.8. Asquare Q
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F1G.9. Atriangle R(¢)

Next we consider two configurations which have no active points. An angle
A, shown in Fig. 10(a), consists of two standard rows having a common endpoint
and which lie on lines meeting at 30°. A junction J, shown in Fig. 10(c), consists of
3 standard rows having a common endpoint and which lie on lines that all meet
each other at 120°. These are represented schematically as shown in Figs. 10(b)
and 10(d).

Finally we form a fundamental configuration C, called a crossover (for
reasons that will become clear later) by combining some of the previous units. The
crossover C consists of two standard triangles R, two junctions J, four angles A,
and a number of rows of points (denoted by g’s) used to interconnect these
components (see Fig. 11(a)). Each g is called a long row and consists of at least
1000 (not necessarily equally spaced) points lying on a straight line with distances
between consecutive points ranging between 1/11 and 1/10. A long row j shares
an endpoint with the corresponding row p of a component it meets and p and g
are collinear (see Fig. 12 for a typical connection). The exact positions of
points in each g are chosen so that the topological arrangement of C shown in Fig.
11(a) is geometrically possible. The schematic representation for C is shown in
Fig. 11(b). If C is constructed using a small triangle R(g) in place of the upper
standard triangle R (with the lower triangle still standard), the corresponding
configuration C(e) is called a warped crossover and is denoted as in Fig. 11(c).

P
P
120° | 120°
[y L
|
A A

J J
(a) (b) (c) (d)
F1G. 10. Anangle A and junctionJ
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.
A

d

¢ a
b
(b)

¢ a

d

¢ a
b

(a)

FI1G. 11. A crossoverC

F1G. 12. A typical connection

We can combine two angles, a junction, and five long rows to form a
terminator (), as shown in Fig. 13(a). We classify these as downward and upward
terminators, abbreviated respectively as in Figs. 13(b) and 13(c), depending on
whether the point a is above or below the other points of the terminator.

(a)

(b} {c)
Fi1G. 13. A terminator )
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We are now ready to construct X(&%). It will be formed by connecting
crossovers, squares, and terminators by long rows g. To begin with, X(%) has a
chainof ¢ + 1 upward terminators (;, 0 =i =, joined by long rows as shown in Fig.
14. Each terminator ), 1=k =¢, is connected to a square Q, which itself is
connected to two other upward terminators ()} and Q as in Fig. 15.

We associate with each square Qy the subset F, ={a;, by, cx} € #. Going up
from Q, will be a chain of crossovers C, (i) for 0 =i < a; connected by long rows.
All the C,(i) are ordinary crossovers except for C;(a, —1), which is a warped
crossover C(e). Located above Cy (ax — 1) is a downward terminator Q. Similarly,

« and Qf each have rising chains of crossovers Ci(i), 0=i <b, and C{(j),
0=j <, respectively, with Ci(b, —1) and C{(c; —1) being the warped cross-
overs in these chains, which themselves are connected above to downward
terminators O and 7. All the C, (i), C(i), C/(i) are at the same horizontal level,
called the ith level, for 1=k =t. Also Q. (lying above Ci(a, —1)) is at the a;th
level, with (); and Qf located at levels b, and ¢, respectively. A single down-
ward terminator () at level 0 is connected directly to the upward terminator £,
below. Finally, all components at the same level are connected in a chain by long
rows. We illustrate a partition of the general format in Fig. 16.

As an example, we show in Fig. 17 a schematic representation of X(%,) for
the family %, ={{1, 2, 4}, {2, 3, 6}, {3, 5, 6}}. The interconnecting lines all repre-
sent suitably chosen long rows p.

In general X (%) will contain 6¢+2 terminators, ¢ squares, 3¢ warped
crossovers and at most 9nz — 3¢ ordinary crossovers. It is not hard to see that the
placement of the various components can be arranged so that the number of
points in X (%) is bounded by a polynomial in n and ¢.

Q £ Q Q3 Qi1 Qy

F1G. 14. A chainof terminators
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LEVEL 1

F1G. 16. A portion of X(F)

F1G6.17. X(%)
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5. Properties of $*(X(%)). We assume an arbitrary (fixed) family %=
{F,F,, ++,F}of3-sets F, ={1,2,- -, 3n}is given. Let $* be a Steiner minimal
tree for X = X(%). In this section we shall show that $* must have a very restricted
structure. In particular, the only points of X that can be adjacent to a Steiner point
in $* are the active points of the triangles and squares.

To begin with, it is easy to see from the construction of X that the longest
edge in a minimal spanning tree T™ for X has length 1, i.e., m(T*) = 1. Hence, by
Lemma 1,

(3) m(S*=1.

Thus, Lemma 4 can be applied to delimit the possible locations of Steiner points in
S*. In fact, for almost every point p of the plane not belonging to X(%), the probe
of Lemma 4 can be placed with p at the probe tip and no points of X inside the
probe. In particular, it follows that there are just two types of possibilities for a
Steiner point s of $*:
(i) s is the 120° point of the three active points of some triangle R or R(g)
(see Fig. 18(a));
(i) s islocated in a certain region & (bounded by 4 elliptical arcs) that lies in
the unit square determined by the four active points of some square Q
(see Fig. 18(b)).
We can determine the boundary of ® in case (ii) by calculating the locus of
locations of the vertex v of the Lemma 4 probe as it rotates through 30° while the
two corners adjacent to v move on the two coordinate axes (see Fig. 19).
A simple calculation will verify that the arc in the first quadrant determined
by v is a portion of an ellipse given by the equation

4) x2+xy\/§+y2=1/3.

The intercepts of the arc are the points (0, 1 /\/§) and (1/«/§, 0).
Having located the potential Steiner points of S$*, it is now possible to draw
strong conclusions about which regular points are linked together by edges.

° °
° °
° °
c od
120° 120°
o000 oo oe
s c a
®yp ae®
o* e eb R
°
°
°
R(g) Q

(a) (b)

F1G. 18. Potential Steiner points
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LeMMA 5. Ifx, y € X and the distance between x and y does not exceed 1/10,
then (x, y) is an edge of S*.

Proof. Since there is a spanning tree for X which contains the edge (x, y), we
know by Lemma 1 that m (Pg«(x, y)) = 1/10. If {x, y) is not contained in $*, then x
and y are joined by a path in $* that contains no edge longer than 1/10 and that
does not use {x, y). By the construction of X, no such path can consist solely of
edges joining pairs of regular points. Thus Pg+(x, y) must contain a Steiner point
and hence an edge joining some regular point to a Steiner point. However, by our
limitations on the locations of possible Steiner points, the length of such an edge
must be at least 1/+/2—1/4/3=0.1297 - - - >1/10. This contradicts the fact that
m(Ps«(x, y))=1/10, proving the lemma. 0O

LEmMMA 6. Any edge of S* longer than 1/10 that joins two points of X must
Jjoin two active points of the same square or triangle.

Proof. The edges that are known to be in $* by Lemma 5 form disjoint
subtrees or “components” of §* that include all points of X. No two points of X
belonging to the same component can be joined by an additional edge (longer than
1/10), since that would form a cycle. But the construction of X, since £ <1/200
(see Fig. 20), insures that the only pairs of points in different components which
are separated by distance 1 or less are active points of the same square or triangle.
Since m($*) =1, the lemma follows. 0 :

LemMA 7. If a point x € X is adjacent to a Steiner point of S*, then x is an
active point of either a square Q or a triangle R or R (¢g).

Proof. Since m(S*)=1, any point x adjacent to a Steiner point s must be
within distance 1 of one of the locations where a Steiner point can occur. These
possibilities are shown in Fig. 21,
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R{e)
F1G.20. Edge{(a,, c)longerthan 1

If x is not an active point, then there must be a point y € X in the same
standard row at distance 1/10 from x and closer to the corresponding active point
than x is. By Lemma 5, $* contains the edge (x, y). But then, in either case, $*
contains two edges, (x, y) and (x, s), that meet at a common point x at an angle less
than 120°. This contradicts Fact 4 and it follows that x must be an active point. 0

Inlight of Lemmas 6 and 7, let us call the triangles and squares of X the active
regions, as these are the only regions in which Steiner points and edges longer than
1/10 can occur. Since m(S*) =1, then by Fact 1, we see that there are only a very
limited number of possible configurations of $§* within each active region. We
catalog these possibilities in Fig. 22, where we show the possible configurations of
edges joining active points and (possibly) Steiner points within each type of active
region. Only one representative is given for symmetric configurations.

In Table 1 we list the total length of the edges in each configuration shown in
Fig. 22.

6. The value of /(S*). Before providing estimates on the total length of S*,
we must first pick a specific value for &. Let C'= C(X) denote the number of
crossovers in X = X(%). As noted earlier, C=9nt. We specify ¢ as follows:

5) e =1/(200 nt).
A simple calculation shows that this choice implies that
6) (L(B1)~L(@))C <3L(y1)—L(a),

[ 4 [ 4
[ 4 -
X X

R OR R{g)

F1G.21. Possibilities for Lemma 7
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(By) (B2)
Q . [ ]
(7,) (72)
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()’3) (74)

F1G. 22. Possible configurations in active regions

TABLE 1
Lengths of configurations in Fig. 22

Configuration Total Length
a L{ap=(1-¢)V3
B LBy)= V3
Y1 Ly)=1+v3
s Li{ay)=1-¢
32 L(ﬁi) =1
¥ Liy)=1+V3)/V2
Y3 L(ys)=2

Y4 Liyy)=1
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and also satisfies the inequality £ <1/200 required by the construction of R(g).

Now, by Lemma 5, $* contains all the edges joining adjacent points in the
same standard or long row. Let L, denote the total length of all these edges. If we
consider the graph composed of just these edges, we observe that it is made up
of N=2C+3n+1 connected components. In $* all these N components must be
joined together. Lemmas 6 and 7 tell us that such interconnections can only be
made in the active regions using the configurations of Fig. 22. We use L™ to denote
the total length of these additional edges, so that /(S*)=Lo+L".

TueoREM 1. If F has an exact cover, then

) 1(S*)=3nL(a;)+(C—3n)L(B1)+nL(y1)+Lo;
and if F does not contain an exact cover, then
(8) I(S*) 2 3nL(a:)+(C—3n)L(B1)+nL(y.)+Lo+e.

Proof. Suppose there exists an exact cover ¥ ={F,, F,,,- - -, F, }. We shall
construct a Steiner tree S for X satisfying the bound of (7) and thus implying that
(7) also holds for $*, We begin by including all the edges joining adjacent points in
the same standard or long row, for a total length of L,. The remaining edges are
constructed as follows:

(i) Form a type ¥ configuration in each square Q,,, 1=k =n.

(ii) In each crossover belonging to one of the three columns of crossovers
extending up from some Q;, 1=k =n, form a type a; or type B;
configuration in the upper triangle of that crossover.

(iii) Form a type B; configuration in the lower triangle of each crossover not

considered in (ii).
Since each column of crossovers contains exactly one warped crossover, exactly
3n type @, configurations are formed under (ii) and (iii). Thus the total length of
the additional edges is 3nL (a;) + (C=3n)L(B,)+nl (v1), as desired.

To see that we have indeed constructed a Steiner tree for X it is sufficient to
show that each of the N components is joined by a path to the backbone
component composed of terminators g, o, Oy, -+, Q, and the long rows
joining them (see Figs. 14-17).

First we observe that, since every crossover has either a type a; or type 8,
configuration in one of its triangles, all the components on level i, 0=i =3n, are
joined together into an overall level i component. Moreover the level 0 component
is joined to the backbone since terminator () is both at level 0 and in the
backbone. If F, ={a, by, ci} € F', we have by (ii) that the downward terminators
Q. Q) and QY are joined to crossovers Ci(ax —1), Cilbx —1) and Cl(ci—1),
respectively, by type @, configurations in the upper triangles of those crossovers.
. Thus the level a;, component is connected to the level @, —1 component, the level
b, component is connected to the level b, —1 component, and the level ¢,
component is connected to the level ¢, —1 component. Since each integer i,
1=i=3n, belongs to some Fe %, it follows by induction that all level compo-
nents are connected to the backbone. The connected component formed by the
backbone plus all the level components forms a single skeleton component. The
only components remaining to be accounted for are those running between
successive levels, such as the long row component that runs from crossover C (i)
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to C (i +1), and those that run from the squares Q, and level 0. However, it is
easy to see that (ii)_and (iii) guarantee that each of these is connected to the
skeleton in exactly one place, the connection being at the “bottom” of the
component if it is in one of the columns associated with a Qy for which F, € #' and
through the “top” otherwise. The reader may verify that since ' is an exact
cover, the graph we have constructed contains no cycles, and hence is a Steiner
tree for X.

Thus we have shown that (7) holds if % contains an exact cover. We shall now
complete the proof by showing that if (8) fails to hold, then % must contain an
exact cover. If (8) does not hold, we must have

(9) L*<3nL(a))+(C—-3n)L(B1)+nL(y;)+e.

For each configuration w shown in Fig. 22, let N(w) denote the number of
active regions that contain a type w configuration in $*. We then have

(10) L*=Y N(w) - L(w).

Recall that if we consider only that part of S* made up of edges with length 1/10
or less, there are exactly N=2C+3n+1 connected components. These N
components are joined together in $* by the configurations from Fig. 22 that
oceur in certain active regions. By observing the number of components that are
joined together by each type of configuration, we see that we must have

+N(B2) +2N(y2) +2N(y3) + N(va).

The integer multiplier in (11) for each configuration type is the reduction in total
number of components obtained by using one instance of that configuration, i.e.,
one less than the number of components joined together by that configuration.
From Table 1, we can obtain the following inequalities on the average length per
single component reduction using each configuration type:

(12)  3L(a1)<3L(B1) <3L(y:1) <3L(y;)<L(az) <L(B2)=L(ys= 3L(v3).

11

Now, although there are ¢ crossovers in X and hence 2C triangles, there can
be at most C configurations of types a; and B;. This is because no crossover can
contain two such configurations, since that would cause a cycle to occur in $*.
Thus

(13) N@)+N@B)=C.

We claim that for (9) to hold we must have equality in (13').
Suppose N(a;)+N(B1)=C-1. Then by (10), (11), (12) and the fact that
N=2C+3n+1, alower bound on L™ would be

3n+2

L+§(C‘—1)L(a1)+( )L(‘yl).

However, as noted in (6), the choice of ¢ insures that
C(L(B1)—L(ar)) <3L(y1)~L(as)
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which in turn implies

3n+2

L* 2@~ L) +(Z5 )L 0> CLE) +nL(r)

=3nL(a)+(C=3n)L(B1)+nL(y)+3ne/3

which clearly contradicts (9). Thus, if (9) holds
(13) N(a)+N(@B)=C.

Because of (13), every crossover in $* contains exactly one configuration of
type a1 or type B8;. Thus, all components belonging to the same level are joined
together, for each of the 3n +1 levels. Next, note that we can have at most one
type a; configuration at each level, since the presence of two such configurations
in the same level would form a cycle with points in the level above it. (Type a;
configurations only occur in small triangles, which are always the top triangles in
their respective crossovers, and link directly to downward terminators in the next
higher level. Two such links between a pair of adjacent levels creates a cycle.)
Thus N(a;) = 3n, since there are no crossovers in level 3n of our construction. As
before, we can argue that equality must hold. For suppose N(a;)=3n—1. Then
by (10), (11), (12), and (13) we would have

L*2Bn—1)L(a)+(C—=3n+1)L(B1)+nL{y1)

=3nL(a1)+(C—3n)L(B)+nL(y:) +ev3
another violation of (9). Thus if (9) holds, then
(14) N(a;)=3n.
From this, (9), (12), and the fact that 2L (y,) >3L(ys)+¢ it follows that
N@)=C-3n;  N(y)=n;
N(az) = N(B2) = N(y2) = N(v3) = N(v4) = 0.

Notice that if G (i), i >0, is a crossover that has its Steiner point in its upper
triangle, then C.(i —1) must also have a Steiner point in its upper triangle, for
otherwise the vertical long row component between them would not be joined to
the rest of the tree. By induction, this forces the base square Q, to have some
interconnected active points and hence a type v, configuration, since by (15) no
other configuration types can occur in a square Q.

However, for each k, 1<k =3n, the (k—1)st level contains a type a;
connection, that is, a (warped) crossover with a Steiner point in its upper (small)
triangle, by (14). By the preceding remarks, this forces the square Q, below the
crossover to contain a type y; configuration. Moreover, by our construction of X,
k must be an element of the 3-set F;, corresponding to Q. Hence, the only way
that just # squares Q;, can have interconnected active points is if the correspond-
ing sets F;, cover {1,2,---,3n}. This in turn implies that those sets must be
disjoint. Therefore (9) implies that an exact cover exists and the theorem is
proved. 0O

(15)
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7. Conversion to the discrete problem. In this section we return to the
DESMT problem, the subject of our NP-completeness result. The basic construc-
tion in § 4 did not restrict X to points with integer coordinates. Indeed, a detailed
specification of -that construction would even contain points with
irrational coordinates. However, Theorem 1 gives us some slack, by providing a
gap of £ between the lengths of an ESMT for X = X(%) when an exact cover for ¥
does and does not exist. By an appropriate scaling and rounding process, we shall
convert that construction to the required discrete form in such a way that the
length discrepancies introduced by this conversion are insufficient to make this
gap disappear.

The conversion proceeds in two steps. In the first we perform the scaling. Let
M =|X(%)| and set

X = { (12Mx1, —%—sz): x=(xq,x3) eX(%}.

&

Now the minimum distance between points of X" is at least (12M/11¢) » 200, and
Theorem 1 has been scaled up as follows (where L, is defined to be 3nL (a1)+
(C=3n)L(B1)+nL(y1)+Lo):

THEOREM 2. Let S’ be a Steiner minimal tree for X'. Then, if F has an exact
cover,

(16) iH=2Mp,
and otherwise,
an I(s) = 1iMLﬂL 12M.

The second step of the conversion is to round up the coordinates of X", using
the rounding function f:RXR->ZXZ defined so that, if x =(xq, x,), f(x)=
([x11, [x2]). We specify the input to the DESMT problem which corresponds to
to be the set

X'={f(x):xeX'}

and the length L =[(12M/e)L,+6M]. Note that because of the substantial
distance between points in X’, this rounding will not cause any distinct points of X
to coalesce, so that [X"|=|X'| =|X|=M.

As we shall show, the analogue of Theorems 1 and 2 now becomes the
following:

TueoreM 3. Let S® be a discrete Euclidean Steiner minimal tree for X". Then
if F has an exact cover

(18) I'(SP)<L,
and otherwise,

(19) 'SPYy>L+2M.
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Proof. Suppose first that & has an exact cover and let S’ be an ESMT for X,
with Y being its set of vertices. By Theorem 2, [(S") =(12M/¢)L,. By Fact 2, we
may assume that |Y’| =2M —2 and hence S’ has at most 2M —3 edges.

Now let Y”={f(x):x € Y'} and consider the tree T” with vertex set Y” and an
edge between two points if and only if their inverse images under f are joined by
an edge in §’. For each edge {x, y} of S’, we have

d'(f(x), fy) = [d(x, y)++2] <d(x, y)+3.

Hence I'(T"y=1(S")+(2M —3) - 3<(12M/e)L,+6M =L and (18) is proved.

Before proving (19), we first observe that Fact 2 continues to hold in the
discrete case. All that is required for Fact 2 to hold is that the distance metric obey
the triangle inequality as d' does. For, if this is the case, there is no value in having
a Steiner point with degree two or less in the Steiner minimal tree, and a simple
counting argument then suffices to show that there need be at most |X|— 2 Steiner
points in a Steiner minimal tree for X.

Now, suppose & does not have an exact cover, but that $© is a DESMT for
X"with I'(SP)=L +2M. Let Y” be the vertex set for S©. By the previous remark,
we may assume that |[Y?|=2M—2 and hence S” has at most 2M—3 edges.
Define g: ZXZ->RXR by

y', ify'eX and f(y')=x,
g(x)={

x, otherwise.

Because fis a 1-1 map of X’ onto X", gisa 1-1 map of Y” onto (Y -X")UX'=
Y'. Consider the tree T’ with vertex set Y’ and an edge between two vertices if and
only if there is an edge in S between their inverse images under g. For each edge
{x, y} of S” we then have

d(g(x), g0) =d'(x, y) +V2 <d'(x, y)+2.

Hence (T)=L+2M+2(2M-3)<(12M/g)L,+12M. But since X' < Y, this
implies by definition of an ESMT, that there exists an ESMT S’ for X’ such that
1(Sy<(12M/e)+12M, a contradiction to Theorem 2. Hence (19) holds and
Theorem 3 is proved. [

THeEOREM 4. The DESMT problem is NP-complete.

Proof. We first use Theorem 3 to show that the DESMT problem is NP-hard,
that is, that a known NP-complete problem is polynomially reducible to it. The
known NP-complete problem is of course, the X3C problem. Let % be an
arbitrary input to X3C. As specified earlier, the corresponding input for the
DESMT problem is the point set X", as constructed via the intermediate set X of
§ 4, and the integer L = [(12M/e)L,+6M]. By Theorem 3, % has an exact cover
if and only if X" has a DESMT of length L or less. Thus the reduction of X3Cto
DESMT works as required. We now indicate why the reduction is a polynomial
reduction, that ’s, why it can be accomplished in time bounded by a polynomial in
the number o1 pits needed to specify %.
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Our first claim, which can be verified by a straightforward examination of the
construction in § 4 is that M = |X| =|X"| can be bounded by a polynomial in n and
t, and hence in the number of bits specifying . Secondly, since X has a spanning
tree with maximum edge length 1, X" has a spanning tree with maximum edge
length at most (12M/ £) + 3. Hence if we let the left- and bottom-most point of X”
have coordinates (0, 0), all points have nonnegative intéger coordinates bounded
by M((12M/ &) +3) = 2400ntM> + 3M, still a polynomial in # and ¢. Thus X” can
be specified as a listing of its points using a number N of bits bounded by a
polynomial in the number of bits specifying &. Our next observation is that,
although the details are not spelled out in § 4, it is possible to follow the schematic
given there to construct X in time proportional to N, using symbolic square roots
to describe coordinates, but in such a way that no point of X has more than one
square root in any coordinate. Given a representation of X in this form, it then is
possible to perform the scaling and rounding to obtain X", again in time
polynomially-bounded in N. Thus the whole process of constructing X" from %
can be accomplished in time bounded by a polynomial in the number of bits
specifying % and our reduction is a polynomial reduction.

To complete the proof of NP-completeness, we must show that the DESMT
problemis in NP, that is, it can be solved in polynomial time by a nondeterministic
Turing machine. To do this it will be sufficient to show that given a set X of points
in the plane, a DESMT for X can be described with a number of bits bounded by a
polynomial in the number of bits specifying X. A nondeterministic algorithm for
the DESMT problem could thus “guess” the DESMT, compute its length, and
compare the result to L, all in polynomial time. So let X be a set of integer
coordinate points, and set M =|X]|, m =max {|8]: 8 is a coordinate of a point in
X}. By the remark about Fact 2 in the proof of Theorem 3, we know that a
DESMT for X need have at most 2M —2 vertices and 2M — 3 edges. Also, there is
no need for a vertex having coordinates outside the range [—m, m]. Hence a
DESMT can be described with O(M log m) bits. This is clearly bounded by a
polynomial in the number of bits specifying X, which must be at least M+
log,m. O

Although we have been unable to prove that the ESMT problem itself is in
NP, due to the obstacles posed by irrational numbers, we can prove that it is at
least as hard as any NP-complete problem. This result will hold even when we
allow the coordinates of the Steiner points to be output as symbolic expressions, so
long as those expressions are amenable to approximation. By this we mean that an
expression using m bits can be evaluated to within a range of +A in time bounded
by a polynomial in m and log (A). (Otherwise, the symbolic expression would in
effect be computationally useless). For example, symbolic expressions formed
from integers using the operations +, —, -, /, and V meet these requirements, and
indeed are all that is needed to completely specify the coordinates of an ESMT. (In
fact, all the coordinates are of the form (n + nzs/g)/ ns for appropriate integers n;
(cf. [2a])).

THEOREM 5. Suppose A is a polynomial time algorithm which, when given a
description of a finite set X of points in the plane, produces a representation of an
ESMT for X, with the coordinates of the Steiner points given by symbolic expressions
which are “amenable to approximation”. Then the X3C problem, and hence all
other NP-complete problems, can be solved in polynomial time.
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Proof. Suppose such an algorithm A exists. We show how to use A to solve
X3Cinpolynomial time. Given an input & for X3C, construct X” as before. Apply
A to X", yielding a symbolic ESMT S* for X", Evaluate /($*) to an accuracy that
guarantees a value within =M of the actual value. Examining the proof of
Theorem 3, we then note that [(S*)<L if % has an exact cover and /(S*)>
L +2M otherwise. Thus the approximation L* to the length of $* will satisfy
L*=L +M if and only if & has an exact cover, and this simple comparison is the
last step involved in solving the X3C problem using A. Since each stage of this
procedure operates in time bounded by a polynomial in the time for the preceding
step, the whole process constitutes a polynomial time algorithm for X3C. U

Thus the ESMT problemiis at least as difficult as the DESMT problem, even if
irrational square roots are allowed to be represented symbolically. Moreover, our
proofs only capture a part of the complexity of these Steiner minimal tree
problems. For observe that in our construction the number of candidates for
Steiner points was always much smaller than |X]—2, the maximum possible
number which might have been required. We in fact showed that both problems
are NP-hard, even if the number of potential Steiner points is severely limited by
the structure of X. In general one must cope with the possibility that as many as
|X|—2 Steiner points may be needed, and the number of candidates for those
Steiner points could be an exponential function of |X].

8. Some final comments. The results of this paper offer little hope to those
who wish to construct general ESMT’s or DESMT’s. A related problem, arising in
connection with wire routing on printed circuit boards, is the rectilinear Steiner
minimal tree (RSMT) problem [5],[9],[11]. Here the Euclidean metricis replaced
by the Manhattan (or rectilinear) metric, where the distance d(x, y) between
- x=(x1,x2) and y = (y1, y2) is given by da(x, y) = |x1— y1| +x2—y|.

One might hope that the RSMT problem would be easier than either the
ESMT or DESMT problems, since it has the property that one may always
construct a minimum length Steiner tree by choosing a subset of the grid segments
of the grid formed by drawing horizontal and vertical lines through each required
point [9]. Unfortunately this is not the case, since the techniques of this paper can
be used to show that the RSMT problem is also NP-complete. An alternative
proof of this fact appears in [5].

An interesting open question, arising in connection with our attempts to
prove that the ESMT problem is in NP, is whether the following number theoretic
problem belongs to NP:

Given positive integers x;, x5, * * * , X,,and L, is }, \/;, =L?
i=1
Infact, without a result such as this, we are unable even to show that the Euclidean
minimal spanning tree problem belongs to NP, an annoying fact in view of our
ability to construct the minimal spanning tree explicitly in low-order polynomial
time! One approach to showing that this problem belongs to NP would be to show
that there exists a polynomial p(n) such that either '

L=YVx or |L-% Vx
i=1 i=1

> 2‘?(")
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whenever each of the integers x; can be expressed with at most n bits. At present,
however, the best result of this type known [15] has p(n) replaced by an
exponential function of ».
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