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Introduction. It has often been noted (e.g., see [1], [4], [5]) that it
is possible to arrange n consecutive integers into a sequence a,a,...a,
which contains no subsequence forming an increasing or decreasing 3-term
arithmetic progression (A.P.). In other words, if a;, =¢, a; =c+d, a;
= ¢+ 2d for some positive d, then either j = max {1, j, k} orj =min{i, j, k}.
In this note we investigate several questions related to this idea. For
example, we show that any doubly-infinite permutation ...a_,a_;a,a,4;...
of all the positive integers must contain an increasing or decreasing (i.e.,
monotone) 3-term A.P. as a subsequence. On the other hand, we con-
struct a doubly-infinite permutation of the positive integers which con-
taing no monotone 4-term A.P.

Permutations of finite intervals. Let us denote by M(»n) the number
of permutations a,a,...a, of {1,2,...,n} =[1, n] containing no mono-
tone 3-term A.P. To see that M (n) > 0 for all » simply noteif A = a, @, ... a,
has no monotone 3-term A.P. then

A" = (24)(24 —1) = (24,)(2a,) ... (2a,,) (28, —1) ... (2a,,—1)

also has no monotone 3-term A.P. (since the first and last terms of a 3-term
A.P. must have the same parity!) Of course, if A is a permutation of
[1,m] then A’ is a permutation of [1, 2m]. Finally, since no monotone
A.P.’s are created by deleting entries of A, the assertion M (n) > 0 for
all n follows immediately. In fact, much more is frue.

Facr 1.
(1) M@)=2""1 for n>=1.

Proof. As we have already noted, if A4 has no monotone 3-term
A.P., then neither do 24 and 24 —1. Thus, if 4 and A’ are 3-term A.P.-
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free permutations of [1,m], then (24)(24"—1) and (24’—1)(24) are
3-term A.P.-free permutations of [1, 2m]. Hence,

M (2n) > 2M (n)2
Similarly, we have
M(2n+1) = 2M(n+1)M (n).

Since M (2) = 2, M(3) = 4 then (1) follows. m

H.E. Thomas [6] has independently proved (1) by a somewhat
more complicated construction.

In Table 1, we give a list of values of M (n) for n < 20.

Table 1

n M (n) n M (n)
1 1 11 2460
2 2 12 6128
3 4 13 12840
4 10 14 29380
5 20 15 74904
6 48 16 212728
7 104 17 368016
8 282 18 659296
9 496 19 1371056

10 1066 20 2937136

By using the fact that M (16) = 212728, it follows from the preced-
ing argument that

M2 > 1(2.248Y%, 1> 4.

In the other direction, we have the following result:
Facr 2.
(2) M(2n—-1)< (»1)?2, M(22) < (n+41)(n!)2

Proof. Let .#(t) denote the set of permutations of [1, ¢] containing
no monotone 3-term A.P.’s. Any permutation Xe.#(n-+1) generates
a permutation X’e #(n) by just deleting n-+1. Consider an element
A =a,0,...a,e #(n) to which n+1 can be added somewhere to form
an A'¢ #(n+1). If a; satisfies

(3) [”+3]<at<n,

2
then the three values

n+1, a;y 2a;,—n—1
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form an arithmetic progression which is not aliowed to occur monotonely
in 4'. Hence, for each a, satisfying (3), »-+1 is prohibited from being
placed just to the right (left) of a; if 2a;—n —1 ocecurs to the left (right)
of a;. Also, if »+1 were prohibited from going to the right of a; and
to the left of a,,; then A could not be extended to an element of .# (n +1).

3
e —] +1 values a; satisfying (3) rules out

4

Hence, each of the n—[

at least one of the n 41 possible locations in A for n-1, leaving at most
[n+3

] places where n-+1 might go. This implies

n-4-3

P4

M(n41) <[ ]M(n)

whieh, in turn, implies (2). m

Permutations of the positive integers. Let A = a,a.0,... be a per-
mutation of the set Z* of positive integers. Denote by &, the set of those
A which contain no monotone k-term A.P.

Facr 3.

y3:g.

Proof. Let A = a;a,a,... be a permutation of Z*. If ¢ denotes
the least index for which a; > a; then for some j > 4,

a/] == Zai—al

and so we always have, in fact, an increasing 3-term A.P. in A. m
Facr 4.
Fs £ OB

Prooi. For k > 0, define the intervals 4, and B, as follows:
Ay = [a+1, @, +10"], By = [by+1, by +10"]

where a, = 0, b, = 1, and in general,
k-1
i=0

Thus, Z* is partitioned into disjoint intervals A,, By, k > 0. Note that

A, = {1} and
|4, = |B,| = 10%.

Let A} and B} denote arbitrary fixed permutations of 4, and B, respect-
ively, which contain no monotone 3-term A.P.’s. Finally, let P be the
permutation of Z* given by

P =BjA;B;A{B; A} ... By A} ...
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We claim that P contains no monotone 5-term A.P. Suppose the
contrary, i.e., suppose X = {»,,®,, %5, x,, #;} Wwith oz, —2, =d> 0 is
a 5-term A.P. occurring monotonely in P. There are several possibilities:

(i) X is a decreasing subsequence of P. Thus, for some k, X < A, UB,.
But this implies that either z,, «,, «; is a decreasing A.P. in B Or Ty, &y, &,
is a decreasing A.P. in Aj. Since neither of these pOSSlbllltleS can occur,
this case is impossible.

(ii) X is an increasing subsequence of P.

(2) Suppose [XN(4,UB,)| <1 for all k. Let wped; UB;
Thus, ¢, <4, < 13 < 4, < {5. Since

i L E<B.
W5 — Ty > @ —a;, > 2107
then
d = }(ws—x,) > 10%.
Thus,
@y = @By —a4< a;, —10% < 2(1+10 +... +10%) —104+ < ¢
which is impossible. Hence, in this case we cannot even have a 4-term A.P.

(b) Suppose for some %k, |XN(4,UB,)| > 2. Of course, since X is
increasing and B, precedes 4, in P, then X cannot intersect both A,
and Bj. Therefore, by the construction of P (which uses A} and B}), we
must have |[XN(4,UB;)| = 2. There are two possibilities.

(o) Suppose | XNBy| =2. If x,,2;¢B, then d = x;— 2, < 10 and

@, =2, —d > b, —10* = a,,
i.e., #, ¢4, which, as we have just noted, is impossible. A similar argu-
ment applies if x;, x,¢B; or wz,, z;¢B,. Thus,
@y = 4+ 3d < ay ., +3-10F
which implies @,e4,,, and consequently, z,, x,e4, .1 as well, which is
impossible.
(B) Suppose |[XNA,| =2. If x,,x,ed4, then d =z, —2, < 10* and

#; = @+ d < a,+10° +10% = q |,

i.e., w;e B, which is impossible. The same argument applies if Xy, Xpe Ay,
Or @,, w3¢ Ay. Thus, the only possibility remaining is x,, z,¢4,.

Now, if 2,¢B,._, then we also must have x,¢B,_; and this is impossible
from Case (i). On the other hand, if ®,e4,_, then XyeA;_and d = x;—m,
< 10*~! which implies

Ty = @+ ad < 210571
i.e., ®,eB;_,, a contradiction. Thus, #, < a,_, and 80,

d = §(w,—1;) > (ay—ap_,) = 10571,
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Therefore,
v, =, —Ad< a,_; —10°"1 <0

which is a contradiction.

This completes the proof that P contains no monotone 5-term A.P.
and Fact 4 is proved. m

One of the most tantalizing questions still open is whether or not
&, is empty; i.e., whether every permutation of Z* must contain mon- -
otone 4-term A.P.’s. Current opinions are about evenly divided.

Doubly-infinite permutations of the positive integers. If we are
allowed to arrange the positive integers .into a doubly-infinite sequence
A =...a_,a_,a,a,0, ... then, in principle, we have more opportunity
to prevent the occurrence of monotone A.P.’s. Denote by 2, the set
of those A which contain no monotone k-term A.P. As in the case of &,
2, is also empty. This time however, a litfle more work is required to
prove it.

Facr 5.

2, = 0.

Proof #1 (J. H. Folkman [2]). Let 4 =...a_j,a_,aya,a,... be
a doubly-infinite permutation of Z'. For neZ*', let A(n) denote the
index of n in A, i.e.,, A(n) is defined by
a/‘_l(n) =MN.

Suppose A contains no monotone 3-term A.P. Thus, for all a, d > 0,

A< A(a+d) iff A(a+d)> A(a+2d)
and
A(a) > A(a+d) iff A(a+d)<<A(a+2d).

Iterating these relations we obtain

A(a+2md) < A(a+d+2md) and

Ala+(2m+1)d) > Ala+d+(2m+1)d),
m=20,1,2,...

(1) A(a)< A(a-d) iff

A(a-+2md) > A(a-+d-+2md) and

Afa+(@2m41)d) < A(a+d-+(2m+1)d),
m=20,1,2,...

(4)  A(a)> A(at+d) iff

We may assume without loss of generality that A (1) << A(2) (otherwise,
reverse the sequence). By (4), we have

(5) A@m—1)< A@2m), m =1,2,...
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We claim that for any odd a and d,
(6) A(a) << A(a+-d).

For d = 1, this is just (5). Assume (6) holds for a fixed odd d > 1. Let a
be odd and let b = a+2d+4. By assumption

A(b) < A(b+d).
(i) Suppose A (b+-d) < A(b+d--2). Then A (b) < A(b+d-2) and so
Afa) = A(b—2(A+2) < AD+d+2—-2(d+2)) = A(a+d+2)

by (4).
(ii) Suppose A(b-+d)> A(b+d-2). Then by (5)

Afa+d) = Alb+d—(d+2)-2) < AD+d+2—(d+2)-2) = A(a+d+2).

Since A4 (a) < A(a--d) then A(a)< A(a-+d-+2).
Thus, in either case, we have A(a)< A (a-+d+2). This completes
the induction step and (6) is proved. We are now finished, since by (6)

A(1)< A(2m) for all m > 0.

Thus, as in the argument that %, — @, if 2r is the first even number
to the right of 1 and 2r 424 is the first even number to the right of 2r
which is larger than 2r, then 2r44d is to the right of 2r4-2d and 27,
2r +2d, 2r-1-4d forms an increasing 3-term A.P. in A. This completes
Proof 41 of Fact 5.

We sketch another proof of Fact 5 which is conceptually somewhat
simpler although it involves some computation.

Proof 2. We form a directed tree T as follows. The vertices of T
will be certain permutations A e.#(n) for various n. T will have 4 root
vertices 132, 213, 231 and 312. Suppose 4 is a vertex of 7 in which the
subblock B = a;a;_, ... a;,, spanned by {1,2,3} contains some other
3-term A.P. (necessarily non-monotone). We call such a vertex special.
If Ae#(n) is a non-special vertex of 7 and A is a subsequence of
A'e #(n-+1) then A’ is also a vertex of T and (A4, A"y is a directed
edge of T. If no such 4’ exists for A then A is called a ferminal vertex
of T. We show a portion of T in Fig. 1. The basic fact concerning T is
that it is finite. In fact, straightforward computation shows that
T contains no vertices 4 ¢ .#(n) with n > 17.

To complete the proof, we make the following observation. As we
adjoin consecutive integers, starting with A*e .7 (3), to form a permu-
tation P of Z*, we move in the obvious way along a directed path in the
tree. Suppose we reach a special vertex A — a; ... a,. By definition,
the block of A spanned by {1, 2, 3} contains a subsequence @;, @;, @;, Which
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Fig. 1

is a permutation of {a, a+d, a-2d} # {1, 2, 3}. If we restrict our atten-
tirn from now on to just those integers of the form a -+ md, m > 0, then
we can move back to the appropriate root of T, i.e., the permutation
of {1,2, 3} having the same relative order as a; | @i, @, Since T is finite
then as we form P, we must pass through the roots of T an unbounded
number of times. However, this implies that in P some pair of integers
in {1,2,3} must have an unbounded number of integers scparating
them. This, however, contradicts the definition of a permutation of Z*,
and the proof is completed. m

The additional freedom allowed by doubly-infinite permutations can
be used to prevent the occurrence of monotone 4-term A.P.’s.

Facr 6. 2, # 0.

Proof. Define the blocks B;, ¢ > 0, as follows:
B, =1, B2i+l = (2B;,)"(2B,;+1), By +2 (2Bn*1+1) (2 .L+1)l7 >0,

where B denotes the block B written in reverse order. Define the doubly-
infinite permutation P of Z* by
P =...B,B,B,B,B;...
=...28,20,24,16,7,5,6,4,1,2,3,8,12,10,14,9,13,11,5,...
We claim that Pe2,.
We first note that for all i > 0, B, is a permutation of [2%, 2°*! —1]

containing no monotone 3-term A.P. Suppose now that P contains
a monotone 4-term A.P. X = {r,y, 2, w} with either x>y >2z>w or
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X <y << 2<< w, where we have chosen X so that d = |#—y| is minimal.
There are several possibilities:

(i) The smallest two elements of X belong to the same block B,.
Then d < 2° so that the largest two elements of X are in B,,,. Conse-
quently, =, ¥,z and w all have the same parity. If 2j4+1 and 2k+1 are
in B, then 2j and 2k are also in B, with the same relative order. Hence,
we may assume z, ¥, 2, and w are all even. But then

1 T 2
ly_fzz
2 2°'2°"2° 2

is a monotone 4-term A.P. in P since the smallest two elements of 1X
appear in B, , in reverse order of their appearance in B,, the largest
two appear in B, in reverse order of the appearance in B, ,, and the
order of B; and B,;_, in P is the reverse of that of B, , and B,. However,
this eontradicts the minimality of d.

(ii) Suppose ¥ and z occur in the same block B,. Then the largest
element of X occurs in B;,, and the smallest occurs in B; for some j < i.
But this requires B; to appear between B,,, and B; in P which is im-
possible.

(iii) Suppose the largest two elements of X oecur in the same bloek
B;. The third largest element of X must be at least as large as 2°~' since
otherwise, we would have d < 2°7' and consequently, the second largest
element of X would be less than 2° and therefore, not in B;. Thus, the
third largest element of X is in B;_,. Hence, by (i), the smallest element
of X is in B; for some j < ¢—1. As before, this requires B, ; to appear
between B; and B, in P which is impossible.

(iv) Suppose each element of X belongs to a different block B; of P.
Let B, denote the block containing the largest element of X. Then we
may argue as in (ii) and (iii) that the second largest element of X is not
contained in B, ,. Consequently d > 2°~! so that the third largest el-
ement of X must be negative, a contradiction.

Since the construction of the B; prohibits the occurrence of 3 el-

ements of X in a single block then we have proved that P has no mon-
otone 4-termy A.P. m

Concluding remarks. There are a number of questions which we were
either unable to resolve or did not have a chance to look at. We mention
a few of these.

1. The most natural question remaining is whether or not &, = @,
i.e., whether or not every singly-infinite permutation of Z* contains
2 monotone 4-term A.P. It is not clear at present in which direction the
truth lies.
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2. The following modular analogue to the finite problem has been
studied by M. Nathanson [3]. A subsequence Qjyy o+-y b, Of a permu-
tation a,a, ... a, of [1, n] is called a monotone A. P. modulo n if for some
o and d £ 0,

@, =a-+kd(modn), 0<Lk<t.

g3

Nathanson has shown (see [3]) that:

(i) If n # 2" then any permutation of [1,n] contains a monotone
3-term A.P. modulo .

(ii) If » = 27 then there is a permutation of [1,n] which contains
no monotone 3-term A.P.

On the other hand, it is easily seen that a permutation of [1,n]
which eontains no monotone 3-term A.P. also contains no monotone
5-term A.P. modulo n. As in the preceding question, the situation for
4-term A.P.’s modulo #» is unclear.

3. It is possible to partition Z* into three sets, each of which can
be permuted so as to have no monotone 3-term A. P. For example, define
the partition of Z* into consecutive intervals 4, by:

Ay =[1,100], Ayl =[F14,]], k>1.

Now, rearrange each A4, into A} containing no monotone 3-term A.P.
and define

o = ATATATAY, ..

B o= ATATATAY ..,

€ = A; AT AT AT, ...

It is easily checked that &/, # and % form the desired partition. Whether
this can be done for some partition of Z* into fwo sets is not known.

4. Let o/ denote the set of all infinite subsets 4 of Z* for which
there exists a (singly-infinite) permutation of A4 having no monotone
3-term A.P. What is

An[1
sup lim inf HAnll,nll ?
Aesd n n
What is
An[1
suplim sup L——[—ﬁl@
Aes? n n
5. The preceeding questions could also be asked for Z, the set of
all the integers, as well. Only preliminary results are known for this case.
For example, using Fact 4, it is easy to construct permutations of Z
which have no monotone 7-term A. P.



90

£t]

[2]
[3]

(4]
(5]
(6]

J.A.Davis, R. C. Entringer, R. L. Graham and G. J. Simmons

References

R.C. Entringer and D. E. Jackson, Elementary Problem 2440, Amer. Math.
Monthly 80 (1973), p. 1058.

J. H. Folkman (unpublished).

M. B. Nathanson, Permuialions, periodicity and chaos, Journ. Comb. Th.
(A) 22 (1977), pp. 61-68.

Tom Odda, Solution to Problem E 2440, Amer. Math. Monthly 82 (1975), p. 74.
G. J. Simmons, Solution to Problem E 2440, ibid. 83 (1975), pp. 76-77.

H. E. Thomas Jr., Solution to Problem E 2440, ibid. 82 (19735), pp. 75-76.

Received on 29. 6. 1976 (858)



