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One approach to coping with the apparent difficulty of many
schedule-optimization problems, such as occur in machine shops and
computer processing, is to devise efficient algorithms that find
schedules guaranteed to be “near-optimal.” This paper presents an
introduction to this approach by describing its application to a well-
known multiprocessor scheduling model and illustrating the variety
of algorithms and results that are possible. The paper concludes with
a brief survey of what has been accomplished to date in the area
of scheduling using this approach.

CHEDULING PROBLEMS arise in many practical circumstances
and under a wide variety of guises. Many are basically optimization
problems having the following form: Given a collection of tasks to be
scheduled on a particular processing system, subject to various constraints,
find a feasible schedule that minimizes (or in some cases maximizes) the
value of a given objective function. Thus it is not surprising that much
of the work on scheduling theory has been devoted to the design and
analysis of optimization algorithms—algorithms that, when given a par-
ticular instance of a scheduling problem, construct an optimal feasible
sehedule for that instance.

Unfortunately, although it is not difficult to design optimization al-
gorithms (e.g., exhaustive search is usually applicable), the goal of de-
signing efficient optimization algorithms has proved much more difficult
to attain. In fact, all but a few (e.g., [6, 11, 21, 27]) schedule-optimization
problems are considered insoluble except for small or specially structured
problem instances. For these scheduling problems no efficient optimization
algorithm has yet been found and, indeed, none is expected. This pessi-
mistic outlook has been bolstered by recent results showing that most
scheduling problems belong to the infamous class of “NP-complete prob-
lems” {4, 30, 35, 36]).

For these reasons practitioners often are willing to settle merely for a
feasible schedule, so long as they have some indication that it is a reason-
ably good one. Though there are problems for which finding even a feasible
schedule seems computationally hopeless, for most schedule-optimization
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problems there do exist simple heuristic algorithms that find feasible
schedules quickly. In this paper we shall discuss one particularly attractive
approach to analyzing how good, relative to optimal schedules, are the
schedules constructed by such heuristics. This approach deals with proving
“performance guarantees.”

At this point it is convenient to introduce a bit more formalism into
our discussion. A scheduling problem will consist of two parts: a model and
an objective function. The model describes the system, including the kinds
of tasks and the constraints on their processing, the types of processors
and their number, and all other properties necessary to specify feasible
schedules. The objective function assigns a “value” to each feasible sched-
ule. An instance of such a problem is merely a specification of a particular
system, set of tasks, and set of constraints conforming to the model.
Given an instance I, the model tells us what the feasible schedules for I
look like and the objective function tells us what their values are. The
optimal schedule value for I, which we denote by OPT([), is the minimum
(or in some cases the maximum) of the values for all feasible schedules.
An optimal schedule is a feasible schedule for I having value OPT (7).

A scheduling algorithm A for a particular problem is a procedure that,
given any instance I of that problem, produces a feasible schedule for I.
We let A(I) denote the value of the schedule found by A when applied to
I.If A(I) always equals OPT(I), then we call A an optimization algorithm.
Otherwise, we shall call A an approximation algorithm, with the implied
hope that A will find near-optimal schedules.

A traditional method for evaluating approximation algorithms has been
to run them on selected sample problem instances. Indeed, for some al-
gorithms this is still the only practical approach. However, this approach
does suffer from some major drawbacks. First is the difficulty of choosing a
convineing set of realistic sample problem instances. There is always the
danger of omitting, through choice or accident, the instances for which our
algorithm performs poorly. Second is the difficulty of using this approach
to obtain an absolute performance measure on our algorithm. Since it is so
difficult to find the optimal schedules to which we would like to compare
our constructed schedules, this evaluation approach seems better adapted
to comparing alternative heurstics than to determining how “near-optimal”’
our algorithm is.

An alternative theoretical approach is to evaluate approximation al-
gorithms using probabilistic techniques. For example, one might derive the
expected values of A(I) and OPT(J) and compare them. Results of this
type (though not exclusively for scheduling problems) have appeared
recently [31]. Although this approach can yield useful and interesting in-
formation about algorithms, it too has its drawbacks. First of all, it is
often very difficult to determine a probability distribution that can be
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dealt with mathematically and that also mirrors the problem instances that
arise in practice. Secondly, given such a distribution, the current state of
our abilities is such that many additional, and unjustified, assumptions
must usually be made to complete a probabilistic analysis of even the most
simple-minded algorithms.

Moreover, both these approaches suffer from another drawback. Although
they may give some indication of average case performance, neither ap-
proach tells you anything about how close A(I) will be to OPT(I) in a
particular instance. It is here that the performance guarantee approach
can give useful results.

Basically, a performance guarantee is a theorem that bounds the worst-
case behavior of a particular approximation algorithm. For a minimization
problem it might take the form: “For all instances I, A(I)<r-OPT(I)
+ d,” where r=1 and d are specified constants. In general, the additive
constant d will be asymptotically negligible (and for many results of this
type it is 0). The dominant factor will be the ratio r.

In analyzing an algorithm we will want to find the smallest » for which
such a theorem can be proved, i.e., the best possible guarantee. We can
show that no better bound can be proved by constructing problem in-
stances on which the algorithm performs essentially as poorly as the bound
allows. More precisely, if we can show that for some constant d and all
N>0 there exist problem instances I with OPT(I)>N and A(I)>
*"-OPT(I)— d’, then clearly no performance bound can be proved with
r<r’. Just as our upper-bound theorems provide a guarantee that the
algorithm will never do worse than is stated, these examples provide a
warning as to how bad it may be. We say that we have determined the
worst-case behavior of an algorithm if the ratio r of our guarantee is the
same as the ratio 7’ of our warning. This common value then must be the
smallest ratio that can be guaranteed by the algorithm, and we call it the
worst-case performance ratio or simply the performance ratio for the algo-
rithm.

By determining the performance ratio for an approximation algorithm,
we obtain information that supplements that obtained by the other ap-
proaches and that provides us with a useful and rigorously defined quantity
with which different approximation algorithms can be compared. There
are, of course, drawbacks to worst-case analysis, too. In practice an al-
gorithm may perform much better than it does in the worst case. The
problem instances causing worst-case behavior may be contrived and un-
natural. However, a good worst-case bound may be reassuring in a way
that an average case result cannot be. It gives a bound that always holds,
no matter what the problem instance. If nothing else, algorithms with
performance guarantees .can make ideal starting points for branch-and-
bound techniques or more elaborate heuristics.
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In Section 1 we illustrate the performance-guarantee approach by con-
sidering algorithms for one of the most basic problems of deterministic
scheduling theory. These algorithms will provide examples of the variety
of phenomena that can occur. We also give some indication of how one
goes about proving performance guarantees and analyzing worst-case be-
havior. Section 2 presents a brief survey of the literature, indicating other
scheduling problems for which such results have been proved and discuss-
ing how some of these results are interrelated. Section 3 concludes briefly
with some general observations on the design of good approximation
algorithms and the methodology of proving performance guarantees.

1. SCHEDULING INDEPENDENT TASKS

One model that fits many scheduling problems is the following. The
system is a set of m identical processors {Py, ---, P.} that operate in
parallel. The set T={T}, - -+, T} of tasks to be executed consists of in-
dependent tasks (no ordering constraints between them), each of which has
an execution time r(7';) and requires only one processor.

The only processing constraints are that no processor can execute more
than one task at a time and that, once a processor begins executing a task
T, it continues executing 7'; until its completion 7(T';) time units later
(non-preemptive scheduling).

A feasible schedule for T assigns to each T,€T a processor p(7T;), 1<
p(T;)=m, and a starting time s(T';) 20 such that, if p(7;)=p(T,) and
177, then the two execution intervals (s(T;),s(T:)++(T:)) and
(s(T;), s(T;)+7(T;)) are disjoint.

We may represent a schedule by a “Gantt chart’’ as shown in Figure 1.
Each task is represented by a rectangle whose length corresponds to its
execution time, and for each processor we have a row consisting of the
tasks it executes. The cross-hatched regions represent times during which
a processor is idle.

Although this description of the model has been in abstract mathematical
terms, the model does correspond to a simplified version of many real
processing systems. Examples are a computer center containing a number
of computers or even a typing pool, where the typists are the processors
and the letters and papers to be typed are the tasks.

In such a system one desirable goal might be to get all the work done as
soon as possible. We shall be interested primarily in the objective function
corresponding to this goal, called the finishing time or makespan of a sched-
ule. The finishing time for a schedule is the earliest time at which all
tasks have been completed and is equal to max {s(T;)++(T:) : T:€T}.
The finishing time for the schedule in Figure 1 is 6.

This problem of finding a feasible schedule with minimum finishing
time, which we shall call the independent task-scheduling problem, is a well-
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known example of the type of intractable problem mentioned above. It is
NP-complete for m=2, and no optimization algorithm is known that is
practical for anything besides very small problem instances when m=3.
(Certain optimization algorithms based on the knapsack problem seem
to work well in practice for m=2, despite the fact that for some problem
instances they can take exponential time.)

Therefore, we lower our sights somewhat and seek quick ways to gen-
erate feasible schedules. There are, of course, very simple ways to do this.
For instance, one could assign all the tasks to the same processor and set
s(T:)= 2 i51 7(T.) for 1=i=n. This clearly will not yield very good
schedules. In fact, it is easy to see that there are problem instances I for
which this algorithm A has A(I)=m-OPT(I). Thus in searching for
approximation algorithms that generate good schedules, we should use at
least a modicum of intelligence. Consider the following method, called
the lust-scheduling algorithm, for generating feasible schedules.

P, T Ts /

Py Ta T3z

Ps (Te | T2 [/ //]/r

T T T 1}

t=0 1 2 3 4 5 6 7 8
Figure 1. A Gantt chart.

Let F; denote the current finishing time of processor P; in the partial
schedule constructed so far. Initially we set all F;=0. We then treat the
tasks in the order given, assigning each task in turn to the processor with
the current earliest finishing time (so as to minimize the increase in the
latest finishing time). More formally, we start with =1 and proceed as
follows:

1) Choose the smallest j=1 such that F;<F;, 1<5<m. (Find a
processor with the earliest finishing time.)

2) Set p(T;)=j,s(T;)=F; (Assign T; to that processor and start 7
as soon as all earlier tasks on that processor are completed.)

3) Update F;=F;++(T5).

4) If 7=n, the schedule is completed and has overall finishing time
equal to max {F;:1=j<m}. Otherwise, set 1=7+41 and go on to
step 1 for the new T';.

This is clearly a fast method for constructing feasible schedules. It can
be implemented to'run in time proportional to nlog m. Moreover, our in-
troduction of a little common sense into the procedure has paid off, as the
following performance-guarantee theorem shows.
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TuroreM 1 [16]. If A is the list-scheduling algorithm and I is an instance of
the independent task-scheduling problem with m processors, then A(I)=
(2—1/m)OPT(I).

How does one go about proving such a result when, as we have already
seen, determining the precise value of OPT (/) is so hard? In this case we
don’t need to know the precise value of OPT(I); lower bounds on OPT(I)
will do. Clearly, two lower bounds that must be satisfied are OPT(1)
2max {7(T:):1=<4i<n} and OPT(I) = (1/m) D =y 7(T%).

Now consider the schedule generated by 4 and let T be a task finishing
at time A(Z). When 7', was assigned its starting time, we must have had
F;ZzA(I)~7(T:) for all j,1=j<m, by the way the algorithm works.
Therefore, > iy 7(T:)Z7(Tx)+m(A(I)—7(T:)). Rearranging and di-
viding by m, we get

AN S (1/m) Dot 7(T)+ ((m—1)/m)+(Tx) OPT(I)
+ ((m—1)/m)OPT(I)

by our two lower bounds. The theorem follows.

That Theorem 1 gives the best performance guarantee possible for the
list-scheduling algorithm follows from examples like those given in Figure
2, where we show both an optimal schedule and the list schedule for problem
instances specified by: T={Ti, : -, Toma}; 7(T:)=m—1, 1ZiEm—1;
r(T:)=1,mZ2iZ2m—2; 7(Tem_1) =m.

Thus we have determined the worst-case behavior of the list-scheduling
algorithm. If we consider the general problem in which m is not fixed but
is specified as part of the problem instance, the worst-case performance
ratio is 2. For the subproblems corresponding to each fixed m (where m
is part of the model rather than a variable associated with each problem
instance), the worst-case performance ratio is 2—1/m.

The question arises, can we find an algorithm that does still better?
One way of trying to find a better algorithm is to examine the worst-case
examples for the previous algorithm to see if there are any further common
sense principles we could use to avoid them. Looking at Figure 2, we ob-
serve that the poor performance of the list-scheduling algorithm might be
attributed to delaying the longest task until last. A natural way of avoiding
this is to preorder the items so that they are in decreasing order of execution
time, i.e., 7(T)2r(Ty)= -+ 27(T,).

Thus one might propose the following algorithm, which often is called
the LPT (largest processing time) algorithm [17]. First, reindex the tasks
so that they are in decreasing order of execution time. Then apply the
list-scheduling algorithm to the reordered task set. The LPT algorithm
is again a quick and simple procedure. It can be implemented to run in
time proportional to nlog mn.
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Turorem 2 {17]. If A is the LPT algorithm and I is any instance of the in-
dependent task scheduling problem with m processors, then A(I)
= (45—24m)OPT(I).

We shall not prove this guarantee here. The details are in {17]. However,
we do note that the proof is not as simple as that for Theorem 1. As al-
gorithms become more sophisticated, the proofs unfortunately tend to

Tm T
Tm+1 T
Tom-2 Tm-1

Tam-1

OPTIMAL SCHEDULE: OPT(I)=m

T Tam-i
T, / 7
Tm-1
Tm | Tm+tjes«{T2m-2 p

LIST SCHEDULE: A(I)=2m-1|
Figure 2. Problem instances yielding A(I) =(2—1/m)-OPT(I) for
the list-scheduling algorithm.

become more complex. Here one argues by contradiction, assuming a
counter-example exists and deriving conflicting consequences as to what
the optimum and the LPT schedules must look like.

Thus, this situation must be contrasted with that of Theorem 1, where
the proof implied bounds on A(I) both in terms of OPT(I) and in terms
of the easily computed lower bound

LB(I)=max { (1/m) > 7 7(T:), max {7(T:): 1<:<m}}.

If A is the LPT algorithm, the best bound on A(I) in terms of LB(I) is
given by A(I)£(2—2/(m+1))LB(I), a considerably worse ratio than
is needed for g bound in terms of OPT(I). The reason for the divergence
between the two bounds is that LB(J) is not a very good lower bound for
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OPT(I). The problem instance given by T={T4, - - -, T'md and 7(T;) =m,
15i=<m+1, in fact yields OPT(I)=(2—2/(m+1))LB(I). Hence
(2—2/(m+1))LB(I) is the best possible bound for an approximation
algorithm in terms of LB(J). Thus, although it is nice to have easily com-

T = {T|.T2,.. .,T2m+1}
T(T2i-4) =T(Tz) =2m-i,1 sism
T{(Tam+()=m

Ty Tom | Tam+i
T2 Tam-1 /"
T3 Tam-2

Tm-14 Tm+2

Tm Tm+4

LPT SCHEDULE A(I)=4m-1

Ty Tem-2
T2 Tom-3
. V
Tm-2 Tm+y 4
Tm-1 Tm
Tam-1 T2m Tam+4 é Y

OPTIMAL SCHEDULE OPT(I)=3m
Figure 3. Problem instances yielding A(I) = (4/3—1/3m)-OPT(I)
for the LPT algorithm.

putable bounds on A (I), we usually will get more information about how
good an algorithm is by proving a guarantee in terms of OPT([), rather
than in terms of some straightforward lower bound on OPT(I).

Returning to the main line of our discussion, we note that the guarantee
of Theorem 2 is the best possible for LPT, as follows from examples like
those given in Figure 3. However, a study of these examples yields no
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obvious ideas about how to improve the algorithm further without at-
tempting an entirely new approach. In the case of independent task sched-
uling, the best polynomial time-bounded approximation algorithm yet
found—MULTIFIT [5]—does not use list scheduling at all.

The basic idea is as follows. Suppose there were some deadline D by
which time all tasks must be completed. One might then try to schedule
the tasks by what is called the first fit decreasing method. Essentially this
method treats the tasks in order of decreasing execution times, assigning
each task in turn to the lowest indexed processor which it will not cause
to exceed the deadline. We can specify this procedure more formally as
follows:

1. Index the tasks so that they are in decreasing order of execution time.
Initially set F;=0, 1<j=<m, and start with 7=1.

2. Choose the smallest 7, 1<j<m, such that F;47(T;) £D. If no such
J exists (i.e., F;47(T;)>D, 1=7=m), then halt. We have failed.

3. Set p(T:) =7, s(T:)=F ;.

4. Update Fj=Fj+T(Ti).

5. If ¢=n, we have succeeded in constructing a schedule with
max {F;: 1<j<m} S D. Otherwise, set ¢=7+1 and go on to the
next task.

For a particular value of D, this procedure will either succeed or fail.
The idea of MULTIFIT is to find, using binary search techniques, a small
value of D for which the procedure succeeds. For full details of the imple-
mentation, see [5]. We shall not describe them here, except to point out
that the overall algorithm runs in time proportional to that for LPT and
has a worst-case ratio for the general problem that is provably less than
1.22 and probably equals 20/17=1.176 - -- This is the best performance
bound proven to date for any fast approximation algorithm for this schedul-
ing problem.

Thus, as might be expected, our search for better and better worst-case
performance ratios finally runs out of gas. At least for the time being there
is an r>1 such that no known efficient approximation algorithm has a
performance ratio better than r, even when we take “efficient”’ to mean
“running time bounded by a polynomial function of the input size,” as is
often done in computer science and the theory of NP-complete problems
[30].

Recall, however, that we have been dealing with the general independent
task-scheduling problem, where the number m of processors is specified by
the problem instance. A different situation arises if we fix m in advance
as part of the model. We shall illustrate this by considering the two-
processor independent task-scheduling problem, where the model specifies
m=2,
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The three algorithms mentioned so far all apply to this restricted problem
and have worst-case performance ratios of 34, 74, and 84, respectively.
Now that m is fixed, however, other approaches become reasonable. Con-
sider the sequence of algorithms A;, A;, - - -, where A; is defined as follows:

1. Let T'CT contain exactly the 2k tasks with the longest execution
times (T'=T if n<2k).

2. Find an optimum schedule S’ for T'.

3. Extend S’ to a feasible schedule for all of T using the list-scheduling
algorithm applied to T—T’.

Step 1 can be performed in time 0(nlog n) by sorting, and step 3 can be
done in time proportional to n. Thus, even if we find the optimum schedule
T’ by trying all possibilities, the time for the whole algorithm is at most
proportional to nlog n+2*, a polynomial in the input size since 2* is a
constant, independent of the number of tasks. Moreover, we have the
following performance guarantee, proved in {17].

TurorEM 3. If I is any instance of the two-processor independent task-
scheduling problem, then Ax(I)=(14+1/2(k+1))0PT(I).

Thus (A;, A, -+ +) is a sequence of polynomial time algorithms whose
worst-case performance ratios approach 1, the best possible ratio. Any
desired level of accuracy can be guaranteed, provided we are willing to
pay for it. Unfortunately, the price rises can be steep. It may not take
much work to guarantee a better ratio than we could with any of our old
algorithms—a ratio of 9§ can be guaranteed by A4; at a cost proportional
to 3n+8. However, the exponential dependence of the running time of A;
on k means that the algorithms rapidly become impractical. For instance,
to guarantee a ratio of 1.01 could take time proportional to nlog n+2*
and, although this is bounded by a polynomial in n, the constant term
2* would be sufficient to use up more than a few computer budgets.

Thus, although the first few algorithms A, may be of practical import,
the overall sequence is at best of theoretical interest. We call such a se-
quence a polynomial time approximation scheme [13], as all the algorithms
in it have the same basic design and each does run in polynomial time. The
difficulty with the polynomial time approximation scheme we have just
described is that it is not polynomial in the amount of accuracy desired.

This should not be surprising. If exponential time appears to be re-
quired to find an optimal solution, we would expect the cost of approxi-
mate solutions to approach this limit as their guaranteed accuracy in-
creased. What is perhaps surprising is that the limit can be approached
much more slowly than we have seen so far. Recent work by Sahni [41] and
Ibarra and Kim [22] has shown that we can design what might be called
fully polynomial time approximation schemes [13]. In particular, for the
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two-processor scheduling problem we have been discussing, Sahni [41)
presents general algorithms that, when given a problem instance I and a
desired performance ratio 1+1/k, find feasible schedules with A(I)=
(141/k)OPT(I) and that have running times proportional to kn’ and
k’n, respectively. We say these are “fully polynomial” because the running
time is no longer exponential in k. The time is still exponential in the
number of digits of accuracy desired, but with ¥ removed from the ex-
ponent, this type of approximation scheme may be able to guarantee very
high accuracy using reasonable amounts of computer time.

The key ideas involved in these fully polynomial time approximation
schemes center on the use of dynamic programming and rounding tech-
niques. We illustrate these by presenting an 0(kn’) scheme for the two-
processor independent task scheduling problem.

As we shall describe the basic algorithm, it will be used only to generate
the set T, of tasks that are executed by the first processor P;. Since we
have only two processors in the system, a feasible schedule can be con-
structed easily from T; merely by assigning all the remaining tasks to the
other processor P;. We generate T, as follows.

Let T=14Y 7 7(T;), and 8=T/kn. (Observe that we must have
OPT(I)=T.) For each task T;€T, let v(T;)=[7(T;)/s], where [z] de-
notes the greatest integer not exceeding z. (This is the “rounding’ re-
ferred to above.)

Initially, set U;=«,1=5j5kn, Uy=0. (This is the dynamic program-
ming variable.) As the algorithm proceeds, U ;< « will mean that we have
found a subset T'CT such that D r,cr »(7;) =j. The value of U; will be
the index of the highest indexed T'; in the first such subset found. The
dynamic programming routine proceeds as-follows, starting with 7=1.

1. For each Uj;=w,v(T;)Sj<kn, set U;=1 whenever Uj_,(r) <.
2. If ¢=mn, halt. (The variables have received their final values.) Other-
wise, set ¢=¢-+1 and go on to the next task.

At the conclusion of the above procedure, U;< « if and only if there is
a subset T'CT such that Y rer o(T:)=7. Let j*=max {j: U< o}.
Our output set T, will be the first subset found such that Znew Lu(Ty)
=7*. The elements of Ty can be recovered easily using the values of U;*
and the other U;.

We claim that the schedule S obtained by assigning the tasks of T; to
P, and the tasks of T,=T —T, to P, has a finishing time that is guaranteed
to obey A(I)Z(141/k)OPT(I). First, suppose j*=(k—1)n. Then
[(k—1)/R)T<S Y rierr 7(T:) Z[(k+1)/k]T. Since D per (T:) =2T, the
same inequality must hold with T, replaced by T.. Thus the overall finish-
ing time for S does not exceed [(k41)/kIT < (14+1/k)OPT(I).

On the other hand, suppose j* < (k—1)n. Let T,* be the set of tasks exe-
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cuted in an optimal schedule by the processor that becomes idle first
(P, if both processors become idle simultaneously). Then OPT(I)=2T
— Y et 7(T;). However, we also must have

T= ZT,»e'l‘l (T,) 2527,-51‘1 o(T) =826 rext v(T:)
2 > rert (r(T9)=8) 2 Xorent 7(T:) —nd

and hence Y rer, 7(T:) SOPT(I)+né=0PT(I)+T/k< (1+1/k)-
OPT([I). Thus in either case A(I) = (1+1/k)OPT(I), as claimed.

A careful examination of the algorithm for finding T; and the correspond-
ing schedule shows that the running time is indeed proportional to kn’, as
claimed. Thus, to guarantee a ratio of 1.01, this approximation scheme
requires time proportional to 100n°, as opposed to nlog n+2* for the pre-
vious scheme. For moderate values of n, this new scheme may well be
practical, although it must be pointed out that for large values of ¥ and n
even fully polynomial time approximation schemes become of more theo-
retical than practical interest. (In addition, they also have the drawback
of requiring more computer storage—the number of memory locations
required here is proportional to kn.)

Before concluding this section, we remark that our performance-guar-
antee formulation allows for the possibility of something even better than
an approximation scheme. Even though optimum schedules might be un-
obtainable, one could conceive of a fast algorithm that guaranteed A([)
SOPT(I)+ d, for some d>0. Results of this form do in fact exist for some
problems [32, 42]. However, they are not likely for problems like the in-
dependent task scheduling problem we have been discussing, as here the
difference between an optimal schedule and a suboptimal one can be made
arbitrarily large by scaling. That is, given a problem instance I, we can
obtain a new instance “k-I’’ merely by multiplying all execution times by
k. There will be an exact correspondence between feasible schedules for
I and k-I, and we would expect A(k-I)=k-A(I) and OPT(k-I)=
k-OPT(I). Thus A(k-I)—OPT(k-I)=k[A(I)—OPT(I)], and this can
be made arbitrarily large for any algorithm A that is not an optimization
algorithm merely by taking a sufficiently large value of k.

2. OTHER RESULTS AND MODELS

The model discussed in the previous section is very simple and basic.
However, similar results continue to hold as we add to it more complexity
to reflect real-life situations. In this section we briefly survey some of the
variations on the basic problem that have been studied from the per-
formance-guarantee viewpoint. (Farlier surveys, less current but more
detailed, can be found in [18, 19, 37].)
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Resource Constraints

In the real world tasks often may require more resources than just a
processor. In our example of a typing pool, tasks may require not only
typists but also typewriters, copying machines, table space, ete. Thus we
might extend our model so that each task has, in addition to an execution
time 7(7;), a number of resource requirements R.(T.), ---, R,(T;) for
the resources Ry, - - -, R,, with B; denoting the total amount of R; avail-
able at any one time. In any feasible schedule, if S, is the set of tasks being
executed at time ¢, we must have Y res, R;(T)<B; for all t=0 and all
5 1sjSs.

The extension of the basic model to include resources is treated in [9].
As might be expected, the worst-case performance ratios for simple al-
gorithms increase as the number s of resources increases. Interestingly
enough, however, the natural generalization of the list-scheduling algorithm
still guarantees a ratio of 2 if there is only one resource and m=n (that is,
there are enough processors so that all tasks could be executed simul-
taneously if it were not for the resource constraints).

Much more work has been devoted to the special case where all tasks
have the same execution time. When m2n and s=1, this problem is
equivalent to the well-studied ‘“bin packing’ problem of {24-26], and the
best performance ratio guaranteed to date by a fast algorithm is 1lg.
(The algorithm is essentially the “first fit decreasing’ procedure men-
tioned in Section 1.) The case where s=1 and m=n and hence where
there are processors as well as resource constraints is studied in [33, 34].
This case for s=1 is examined in [10].

Precedence Constraints

The assumption that tasks can be executed in an arbitrary order is not
always justified. Sometimes it may be the case that one task must be com-
pleted before another one can begin, for example, if some output of the
first task is needed for execution of the second. We incorporate this type
of constraint into the model by allowing a partial order ‘<’ to be defined
on the set of tasks. We use “T;<T;” to mean that 7; must be completed
before T'; can begin; that is, in any feasible schedule we must have s(T';)
Zs(TH)++(Ts).

Although there has been much research into scheduling models involving
precedence constraints, little has been done from the performance-guaran-
tees approach. It is interesting to note that, despite the increased com-
plexity when precedence constraints are added, a natural generalization of
the list-scheduling algorithm still generates exactly the same performance
ratio, A(I)<(2—1/m)OPT(I), when there are m processors. However,
when precedence constraints are added to the resource-constrained version
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of the problem, algorithms seem to have significantly poorer performance
ratios [9, 10].

Nonidentical Processors

So far we have been assuming that all our processors were identical.
However, it is quite reasonable that one might encounter different speed
computers, or different speed typists, or that task times might vary in a
more complicated fashion as a function of processor. The basic model,
extended to include different speed processors, is studied from a perfor-
mance-guarantee viewpoint in {14, 20, 38]. The case where task times may
vary arbitrarily from processor to processor is treated in {1, 23). In another
variation one might order the processors by “capability,” with each task
only executable by processors that are “big” enough for it. This extension
is treated in [28, 29].

Restricted Models

Even when a real-word problem matches one of our models, it may be
that the problem does not require the full generality of the model. There
may be additional constraints on the kinds of problem instances that arise.
Perhaps there are only two processors. Perhaps all the execution times are
equal or belong to a limited set of possible values. Perhaps no resource
requirement is ever larger than half the available amount. Perhaps the
precedence constraints are never more complex than a tree. We have al-
ready seen examples of how such restrictions, if properly taken into ac-
count, may allow us to prove stronger guarantees, and many of the papers
already cited include such special case results.

Other Models

The application of the performance-guarantee approach has not been
restricted to our basic model and its variants. Stone and Fuller [42] con-
sider a problem of scheduling access to a rotating computer memory de-
vice and actually prove a bound of the form A(I) <OPT(I)+1 for a
very simple heuristic. (A similar “difference” result has been obtained in
[32] for a very restricted version of our basic model.) One of the popular
scheduling models that has not yet received much attention from the per-
formance-guarantee point of view is that of job-shop and flow-gshop sched-
uling. The only paper to date on this model is [15], which shows that some
first attempts at possible approximation algorithms do not have very
satisfactory worst-case performance ratios.

Other Obijective Functions

There are, of course, other aspects of a feasible schedule one might want
to optimize besides finishing time, although this is the measure that to
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date has received the most attention. One might be interested in mini-
mizing the total finishing time [D_i— (s(T:)+7(T:))], which reflects the
average length of time until a task is completed. Approximation algorithms
for a problem involving this objective function are treated briefly in [1[,
which also considers how algorithms designed to minimize finishing time
perform under this new objective function.

An even more intriguing example of the behavior of one algorithm under
two different objective functions occurs in [3]. Here the model is the same
as our basic model, but the objective function is Y7 F, where F; is
the finishing time of the last task on the jth processor. The list-scheduling
algorithm, which had a worst-case performance ratio of 43 for the objective
function of overall finishing time, has a worst-case performance ratio for
this alternative objective function lying between 1.03 and 1.04.

Other possible objective functions might measure the total weighted
finishing time, the number of tardy tasks or the total weighted tardiness
(in models where tasks have deadlines), or the number of processors
required. Except for this latter objective function, which provides another
way of embedding the bin-packing problem into scheduling theory, none
of these measures has yet received much attention from the performance-
guarantee point of view.

There also are a number of possible objective functions for which the
optimization problem is a maximization problem rather than a minimiza-
tion problem like all the ones we have treated so far. The knapsack problem
may be viewed as a scheduling-maximization problem in which tasks have
values as well as execution times, and the goal is to schedule on a single
processor the highest valued collection of tasks possible such that all
finish before a given deadline. Approximation algorithms and polynomial
time approximation schemes have been presented for this and related
problems in [2, 22, 40].

(For a maximization problem, a performance guarantee can be put in
the format OPT(I)<r-A(I)+ d. A(I) and OPT(J) have been inter-
changed so that the range of possible values for r remains 1 <7< «. Thus
worst-case performance ratios for both minimization and maximization
problems can be viewed in the same framework.)

Further, one can have very problem-specific objective functions and
still be able to prove performance guarantees. Nemhauser and Yu [39]
consider a problem of train scheduling and construct an objective function
representing expected profits. They then present what is in effect a fully
polynomial time approximation scheme for the corresponding maximi-
zation problem.

Finally, we should mention that for some objective functions, a per-
formance bound in terms of the ‘“worst” possible solution may be of in-
terest (see, for instance, [7]).
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Other Combinatorial Problems

Before concluding this brief survey, we should point out that approxi-
mation algorithms and the performance-guarantee approach are not re-
stricted to scheduling-problems. Results have also been obtained in such
diverse areas as graph coloring, set covering, the traveling-salesman prob-
lem, and various other placement, packing; and routing problems. See
{12] for an annotated bibliography.

3. CONCLUDING REMARKS

We have attempted to introduce the reader to a relatively new approach
to the analysis of heuristic scheduling algorithms. We conclude with some
informal advice to the prospective user of this performance-guarantee ap-
proach. The analysis of the worst-case behavior of an algorithm is the real
heart of the approach. Our treatment of the basic scheduling problem in
Section 1 serves as one model of how to proceed.

The best technique seems to be to converge on the worst-case performance
ratio from both sides. Prove the best guarantee you can, find examples
on which the algorithm behaves poorly, and then try to narrow the gap by
working alternatively on the upper and lower bounds. It is, of course, not
necessary to determine the worst-case performance ratio exactly ; the upper-
bound guarantee is in the nature of things more important than the lower
bound examples. However, information gained from failing to find bad
examples may be of use in proving a better guarantee (and vice versa).
Thus we recommend the use of this alternating technique for as much as
one can get from it.

As to how one actually generates examples and proves bounds, both
processes appear to be very problem-specific. An examination of the litera-
ture to see the methods used for other (related) problems can provide a
valuable background and insight into some general techniques that may
be useful. However, the predominant impression left by such a survey is
that each specific problem seems to require special techniques. In addi-
tion, one cannot help noticing the great length and complexity required
in the proofs for some very simple algorithms. Fortunately, difficult proofs
are not the rule and indeed often are not needed unless one wants to de-
termine the exact value of the worst-case performance ratio (which may be
more of theoretical than practical significance). Many bounds can be proved
quite simply, as we saw in Section 1. The numerous papers cited that prove
performance guarantees are testimony to the viability of this approach.
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