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Introduction

Suppose we are given a finite set X of points in the plane and we are required to
form a network N(X) connecting up all the points of X so that the total length of
N(X) is as small as possible. As might be expected, the difficulty of this task
depends not only on the particular structure X may have but also on just which
candidates are to be allowed for N(X). For example, if N(X) must be formed by
placing straight line segments between appropriate pairs of points of X (with the
length of N(X) being the sum of the (Euclidean) lengths of these segments) then
N(X) is called a minimum spanning tree for X and efficient procedures are known
for generating such networks (see [12]). On the other hand, suppose we are first
allowed to add additional points to X, forming some set Y containing X, and we
then choose N(X) to be a minimum spanning tree for Y. (Extra points can help;
for example, suppose X is the set of vertices of an equilateral triangle.) Such a
network is called a minimum Steiner tree for X. For this case, however, not only are
no eflicient algorithms known for constructing general minimum Steiner trees but,
in fact, there is strong evidence that no such algorithms can even exist in principle.
There are several reasons why the construction of a minimum Steiner tree §*(X)
for X can be difficult. (The fact that it is even a finite problem was not known until
1961 [10].) It may happen that there are many additional points which must be
added to form Y from X (these points are called Steiner points) and the potential
topologies for connecting all these points together are both complicated and
numerous. On the other hand, it may happen that while there are relatively few
potential Steiner points and only very simple topologies for them, there are a
tremendous number of choices among just which ones to choose. It was this second
situation on which the NP-completeness proof for the minimum Steiner tree
problem in [6] was based. It is the first situation that will occupy our attention in this
paper.

Minimum Steiner trees have been studied extensively for some time and a
substantial number of results concerning their structure are known (e.g.,see(4,5,7,
10}). In particular, restricting ourselves to minimum Steiner trees which have no
Steiner points of degree 2 (nothing essential is lost by this restriction), it is known
that any minimum Steiner tree $*(X) for X can have at most | X | - 2 Steiner points
(where, as usual, | X | denotes the cardinality of X). Those trees $*(X) which have
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the maximum number | X | -2 of Steiner points are called full Steiner trees. It is
also known that $*(X) may always be decomposed into sets S*(X),..., $*(X.),
where X,,..., X, are subsets of X with | X, N X;| <1 for all i# j, S*(X\) is a full
minimum Steiner tree for X, and the edges of the S$*(X,) form a partition of the
edges of $*(X) (see Fig. 1).

Fig. 1.

Currently, the most successful algorithms' for generating minimum Steiner trees
for general sets X involve (cleverly) choosing small trial sets for the X,, construct-
ing full minimum Steiner trees on them and then piecing everything together (see
[3]). Thus, it becomes important to understand the structure of sets X, which can
support a full minimum Steiner tree. For example, it would be wonderful® if no set
with more than 100 points could have a full minimum Steiner tree.

Perhaps the simplest’ infinite family of sets whose minimum Steiner trees one
might study are the ladders, so named by Boyce, who first focussed attention on
them in [3]. A ladder L, consists of 2n points arranged in a rectangular 2 by n array
with adjacent pairs of points forming a square (see Fig. 2).
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Fig. 2.

In this paper, we determine the minimum Steiner trees S*(L,) for L,. In
particular, it turns out, as suspected by Boyce, that for n odd, S*(L.) is a full
Steiner tree (for n even, $*(L,) degenerates into a union of S*(L.)’s and S*(L.)’s).

' These work quite well when | X | = 10; problems with | X | = 20, however, appear to be hopeless by

these techniques. .
*In fact, more wonderful than one might first think, in view of the previously mentioned NP-

completeness of the problem.
* Actually, a set of collinear points is even simpler but minimum Steiner trees for such sets are highly

uninteresting.
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This furnishes the first example of arbitrarily large point sets having full minimum
Steiner trees.

It was found that structure of the class of all full Steiner trees on L, i.e., full trees
in which each Steiner point is still the intersection of 3 incident edges, each meeting
the other two at 120° but whose total length may not be minimal, is surprisingly
rich. The analysis of this structure involves a rather delicate interplay between
geometry and diophantine approximation. We summarize some of the results at the
end of the paper. The detailed proofs will be given in a later paper.

We should make a few remarks at this point regarding the style of the paper.
Rather than include full proofs for all assertions made (which would result in a
paper of formidable length), we have elected just to sketch most of the proofs,
giving hints where helpful, but in sufficient detail so that the interested reader will
be able to construct complete proofs if desired. Our object will be not so much to
convince but rather, in the words of Halmos [8], “to induce a benevolent feeling of
credulity.” For any undefined terminology, the reader may consult [5] (for Steiner
trees), [9] (for graph theory) and [1] (for complexity of algorithms).

Preliminaries

We begin by fixing a standard set of points for L,. By definition L, will consist of
the 2n points

{ai,...,a.,b,,...,b.} where a, =2k —2,1)
and
be=Qk-2,—1) forl<k=<n.

The set A ={ay, ..., a.} is called the top row of L,; the set B = {b,, ..., b,} is called
the bottom row of L. A set {a, b.} is called a column of L,. Let $* be a minimum
Steiner tree for L, with vertex set S U A U B. The points A U B = L, are called
the regular points of $*; the points S are called the Steiner points of S*. Edges of
S* are taken to be closed line segments between various pairs of points of $*. We
assume w.l.o.g. that every Steiner point is incident to at least 3 edges of §*.

Fact 1 (see [5]). All Steiner points of $* are incident to exactly 3 edges of S*,
each meeting the other two at 120°. $* has at most n — 2 Steiner points.

By the Steiner hull of X we mean the complement of the union of all (infinite)
closed 120° sectors which do not intersect X.

Fact 2 (see [5]). All Steiner points of $* lie in the Steiner hull of L.
Note that the Steiner hull of X is a subset of the convex hull of X.

Fact 3 (see [5, 7]). No edge of $* can have length exceeding 2.
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Proof. If there were such an edge then we could remove it, forming two connected
components C, and C,, which could then be reconnected by adjoining some edge of
a minimum spanning tree for L,. Since there is a spanning tree for L, with all edges
having length equal to 2 then the new Steiner tree for L, has smaller length than
that of $*, which is a contradiction. [J

Let R denote the infinite closed region shown in Fig. 3. We call R a pointed strip ;
t(R)is called the tip of R. R can have any position and orientation in the plane.

120°

1 (R) €120°

el e

1207

Fig. 3.

Fact 4 (see [7]). If RN L, =0, then t(R) cannot be a Steiner point of S*.

Idea of proof. If we assume that #(R) is a Steiner point of S*, then using Fact 3,
we can (carefully) choose a path in §* which never leaves R (essentially, always try
to go toward the middle of the strip). Hence, if R N L, =@, then the path cannot

terminate and so $* must have infinitely many Steiner points, which contradicts
Fact 1. O

Note that Fact 2 is an immediate consequence of Fact 4.

Fact 5 (see [5]). The angle formed by any two edges of S* with a common
endpoint must be at least 120°.

Proof. If the edges [x, y] and [x, z] make an angle of less than 120°, then adding a
Steiner point in the triangle determined by x, y and z results in a shorter total
length, which is impossible. [J

We remark here that of course no two edges of S* can intersect except at a
common endpoint (see [10]).

Fact 6 (see [4]). There exist (unique) subsets X,,..., X, C L, and full minimum
Steiner trees $*(X.) on X, such that:
@) [IXiNnX;|<1 fori#j
(ii) s = UJ S*(X).
k=1

We call the $*(X.) the full tree components of S*.
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Fact 7 (see [7]). Let x,y €L.. Then x and y belong to the same full tree
component of $*iff x and y are the only regular points on the path in $* between x
and y (where the path is defined to be the (unique) minimal connected set
containing x and y, which can be formed from the union of edges of S*.)

Proof. In a full Steiner tree, a point has degree 1 iff it is regular. [

Fact8. Let p, = (x;,y:) and p, = (x,, y>) be two points in the plane. Then the point
p = (x,y) for which p,, p, and p form a counterclockwise equilateral triangle is
given by

x=3(x,+x,+ \/g(y1 - y2)),

y =3+ y2— V3(x:— x2)).

(see Fig. 4). Furthermore, if C is the centroid of the triangle and z is any point on
the arc of a circle through x and y centered at C, then:
(i) length [p, z] = length [p,, z] + length [p, z],
(ii) £pizp = Lp,zp = 60°.
P2

Fig. 4.

Proof. Elementary geometry (see [10]). O

Minimum Steiner trees for L,
We are now in a position to begin a more detailed analysis of the structure of S *.

Fact 9. Suppose ai_, and ai., are in the same full tree component S*(Xi) of §*.
Then a, is also in S*.

Idea of proof. Suppose a.& S*(X;). By Fact 7, there is a path P=
(a1, 51,82, ..., 8, @) In S* from ai_, to ay., containing no regular points except
ax- and ax.,. By Fact 2, P lies in the Steiner hull of L,. Hence, P must intersect the
open line segment (ax, b ), say at the point x (see Fig. 5) (In fact, there may be more
than one such intersection.)

We next claim that at least one of the points ax-;, ai., does not belong to a full
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tree component which also contains a.. For suppose they both do, i.e., suppose
there are full tree components $*(X.) and $*(X.) with a._,, ax € $*(X,) and
Ay, Ay +1 & S*(XU) If u=uv, then

{ak—l, ak+l} CX.NX

and so u = i, which is impossible since we have assumed a, € S*(X,). If u # v, then
by Fact 7 there are paths P, in $*(X.) from a._, to ax and P, in $*(X,) from a, to
ax+1 and thus, a path P' = P, U P, from a,_, to a.., in §*, which is different from P.
However, in a tree this is impossible and the claim follows. We assume w.l.o.g. that
a1 and a, do not belong to a common full tree component. Again, by Fact 7, there
is a path P, in $* from ax—: to a. which contains some regular point y different
from a,-, and a.. Since no edge of P, can intersect any edge of P (except at a.-,)
then by Fact 2, the only possibility is that y = a, ., (actually, a weakened form of the
Jordan Curve Theorem [11] is used here). If it were the case that a,., and a, also do
not belong to a common full tree component, then the same argument applies and
we get a contradiction, since there would exist a path from ai_, to a. containing
a1 and a path from ay.; to a, containing a,_,. Thus, we must have that a.., and ax
belong to a common full tree component S$*(X;). Since $*(X;)N P = {a..,} then
X; ={aw, ax..} and S *(X;) is just the line segment [ay, ai..]). However, the length of
[as, x] is less than 2 while the length of [ai, ax..] is equal to 2 so that replacing the
edge [ax, ai+1] in $* by the edge [ax, x] we obtain a tree with shorter length than S *.
This is impossible and Fact 9 follows. [

It is clear that the same result also holds for points in the bottom row of L,. More
generally, the following holds.

Fact 10. If i <j <k and a; and ax are in a common full tree component S*(X.,),
then a; is also in S*(X,,).

Idea of proof. Assume a;& S*(X..). Let P be the path in S* from a; to a.. As in
the argument for Fact 9, the path P’ from a; to a; can only intersect P in the point
a.. If P’ has a Steiner point s then by Fact 4, some regular point b, must be
connected to s by a path not intersecting P (since sZ §*(X..)) and this is clearly
impossible. If P’ has no Steiner point then by Fact 3, j =i + 1 and [a;, ;] is an edge
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of $*. But as in the proof of Fact 9, we can replace this edge by a shorter edge from
a; to P, which is a contradiction. [J

Fact 11.  Suppose ax, ac+: belong to a common full tree component S*(X;). Then
either X; = {a, ar.i} or X; N {b, b} # 0.

Idea of proof. Suppose X;# {a, a..}. Consider the closed shaded region Q (part
of the Steiner hull of L,) shown in Fig. 6. By Fact 7, the path P from a, to a., has
at least one Steiner point. Since all Steiner points must lie in the Steiner hull of L,

a - ~ a
k < k!

(

~ -

bk N el bk+1
Fig. 6.

and no edge of P has length exceeding 2 (Facts 2 and 3), then some Steiner point s
of P must lie in Q. But it is not difficult to see that some pointed strip R can be
placed with the tip t(R)=s so that B N R C {b, bi..}. Hence, the desired result
follows from Fact 4. (OO

We now know that if a full tree component $*(X;) has
a]', aj+1,..., ay EX, and bp, bp+1,...,bq EX,‘,
then |[j—p|<1, |k —q|<1.
Fact 12. If n>1, [ai, b.] cannot be an edge of S*.
Idea of proof. Suppose [a, b ] is an edge of S*. Consider the paths P from a, to
ar+ and P’ from b, to b, (if k = n, use a,_, and b._,). We must have either b, & P
or a. & P'. In the first case the angle between [as, b ] and the edge of P leaving a, is

= 90° which contradicts Fact 5. The second case is similar. [

Fact 13. The only two possible minimum Steiner trees for L, are as shown in
Fig. 7.

Proof. This is well known (see [5]). O
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We come now to the crux of the matter. Let L} denote a set of points formed
from L,, by possibly deleting a,..

Fact 14. Suppose m =3 and T* is a full minimum Steiner tree for L*. Then a,
and b, must be joined to a common Steiner point.

Idea of proof. Suppose a, and b, are not joined to a common Steiner point. By
Fact 12, [a,, b,] is not an edge of T*. Thus, the path P from a, to b, has the Steiner
points (in order) s,,...,s, where r=2.

(i) Suppose r = 3. By angle considerations, we see that as we move along P from
a, to b, we cannot always turn in the same direction at each s; since P would then
leave the Steiner hull of L (see Fig. 8). Hence, for some i, P must turn to the left
(counterclockwise) as it leaves s; (see Fig. 9). By Fact 4, there must be a path P’
from s; to some regular point v of T*, where (by a suitable orientation of a pointed
strip R) we may assume v# a,, b;. Furthermore, P N P’ = {s} since T* is a tree.
But this is impossible (by the Jordan Curve Theorem) since v must be on the
outside of the simple closed curve C formed by P and [a,, b] while the first edge of
P’ from s; is on the inside of C.

Thus, we may assume

a4
Sy
p 663\
S2
60°\
7
/
’
O/
by s,
Fig. 8. Fig. 9.

(ii) P has exactly two Steiner points s, and s.. Clearly, P must turn to the right
(clockwise) at both s, and s.. Consider the two 3 lines L, and L, leaving s, and
s, respectively (see Fig. 10).
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There are several possibilities:

(a) Both L, and L; go directly to regular points. This is impossible because T* is
a full Steiner tree on L¥.

(b) Both L, and L, go to further Steiner points s| and s} (see Fig. 11). By placing
suitably oriented pointed strips with tips at s{ and s; we can conclude by Fact 4 that
there are nonintersecting paths from s; to a bottom row point and s} to a top row
point. This of course is impossible.
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Fig. 12. Fig. 13.

(c) L, goes directly to a regular point and L, goes to a Steiner point (the case
with L, and L. interchanged is similar). Let P denote the path from s, to b,. By
hypothesis, P contains at least one Steiner point.

(1) Suppose P contains exactly one Steiner point s* (see Fig. 12). Geometrical
considerations force the slope of the line through s, and s, to be negative. Thus, the
x-coordinate of s* is less than 2. Consider the ‘3™ line segment L” leaving s*
(parallel to [by, s2}). If L” terminates at a point § with x-coordinate less than 4 then §
is a Steiner point and the tip of a suitable pointed strip can be placed at § so that the
conclusion of Fact 4 cannot hold. On the other hand, if the x-coordinate of § is at
least 4, then the length of L” = [s*, §]is > 2 which contradicts Fact 3 (which applies
to L} as well as L,,).

(2) Suppose P contains at least 3 Steiner points. In this case, an argument similar
to that used in (i) applies and we reach a contradiction. B

(3) P contains exactly 2 Steiner points § and 5. Let L =[5, 5] and L =[5, §] be
the corresponding 3" line segments (see Fig. 13). It is immediate that P must turn to
the right at § and § as shown in Fig. 13. As before, the slope of the line through s,
and s, must be negative. Since [s,, s,] is parallel to 5, 5] then in order for L to be
able to terminate, its extension must pass through or below a,. Therefore, by
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comparing what happens in the parallel situation as we go along the path from b, to
5. to s, to a,, we must have length [s,, 5;] = length (3, 5]. There are now 4 cases to
consider:

(A) p and p are both regular points. Thus, we must have P =a,and p = b, (see
Fig. 14(a)) and L = L,. In this case, a simple calculation shows that the length of
T* is

2V15+6V3=10.078. ...

However, the length of the Steiner tree for L; shown in Fig.14(b) is only

V44 +24V3=9251. ..,

so that T* is not a minimum Steiner tree.

(a) (b)

Fig. 14.

(B) p and p are both Steiner points. In this case we reach the same difficulty we
had in (ii) (b), where the extensions of the 3™ lines from the 2 Steiner points ran into
each other.

(C) p is a regular point and p is a Steiner point. Thus, j = a; (see Fig. 15). Note
that since the slope of [b,, 5.} is less than 1, then the slope of [a,, s,] is less than
—tan 15°

(a) Suppose the extension of L passes below b,. Thus, [5, bs] must be an edge of
T* and so, the x-coordinate of p is less than 4. But this implies that the length of
[P, z), the 3" line leaving j parallel to [b,, 5.}, must exceed 2 (since the x -coordinate
of z must exceed 6) and this is impossible.

Fig. 16.

(B) Suppose the extension of L passes through or above b,. Of course, it must
pass below bs, since tan 15°>1/4. Based on Facts 4 and 9, L must g0 to a Steiner
point s;. Also, there is another Steiner point s, so that [ss, s.], [bs, ss] and [b., 4] are
edges in T* (see Fig. 16).
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We shall show length [b,, 5] > 2 so that this configuration can not be part of a
minimum Steiner tree for L.

Claim. Length [b, s:]>2.

Proof. Let 6 denote the angle Za.as;. It is easy to see that
tan 6 <. 1)

Let v be determined so that [s,, v] is parallel to {a,, a-} and v is on the line [s., bi]
(see Fig. 17). Let u denote the point at the intersection of [s,, v] and the extension
of s, §].

It is easily verified that

length [sy, 5.} = length 3, §] = length [s, s4].
Let z denote the point at the intersection of [as, bs] and the extension of [a:, 51]
(see Fig. 18). It is clear that
tan 6 = (2 — length [z, b4)).

Fig. 17. Fig. 18.

On the other hand

length [z, b,] <3length[s,, ul.
Thus
tan @ = (2 — 3length[s,, u]). )

The angle Zs,bb; is equal to 60°~ 6. From Fig. 19 we see that
x =length[s,, v] =2 —2tan (60° - 9). 3)
Also, we have
angle Zvs;s, = 30°— 6,

angle Zs;vs, = 30°+ 6.
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Fig. 19.

Let w denote the point on the extension of [s,, 5,] so that Zs,wo is 90° (see Fig.
17). Then,

length [v, 5,] = 2— length {v, w]

= \/ig x sin (30°— 8),

length[s,, w] = \/Lgx sin (30°— 6),

length[s,, w] = x - cos (30° — ),

length [s,, 5.] = x (cos (30°— 6) — sm (30°—96))
=X -L_sin (30°+ 6).
V3
Now,
length [s,, u] +length [u, v] = x.
On the other hand,

length [s;, u] _ length[si, s,] _ sin (30°+ 6)
length[u,v]  length[v,s;] sin(30°— 6)’

length s\, u] <1+M—)> = x,

sin (30°+ 6)

length [s;, u} = x sin (30°+ 0)/cos 6.
From (3), we get
length [s1, u] = 2(1 — tan (60° - 6)) - sin (30°+ #)/cos 8

=(1-V3)+(V3+ 1)tan 6.
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Therefore, by (2),

6tan 6 =2 —3((1— V3 + (V3 + 1)tan 6),
tan 6 >0.2955. . ., 4)
0 >16.46.
In Fig. 18,

length [bs, s4] = —\%length [p, bs]

=—2—-2-sin0,

V3
length [by, 5] = 3 length [bs, s.] + length [§, 5]
— 2
=4V 3sin 6 + —\/—isin (30°+ 0) - (2 — 2 tan (60°— 0))
_ 2
> 4V/3sin (16.46%) + 550 (46.46°) - (2~ 2tan (60° ~ 16.46"))
=2.046....

This proves the claim and consequently, case () cannot occur. This concludes
case (C).
(D) p is a Steiner point and p is a regular point. Thus, p = b; (see Fig. 20).

04 Qz az Qg

Fig. 20.

Let {p, p*] be the edge leaving p parallel to [s,, s.]. If p* is a Steiner point, then
the slope of [b., §] would have to be less than } (i.e., the extension of [b,, §] cannot
pass above as). However, it is clear that the slope of [a,, s|] is greater than —3
because of the path from a; to bs. Since the angles Za;s,s; and £s,s,b, are 120° then
we have a contradiction. Thus, p* is a regular point and, in fact, p* = a,.

We now claim that if we are able to show that

length [as, p] <2V 15+ 6V3—V44+24V3=0.8278. .., )

then we are finished. For, the length of the tree spanned by {a, a:, as, by, b,, b3}
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(and Steiner points {s,, 5, 5, 5, p}) in Fig. 20 is at least as long as that of the tree in
Fig. 14(a) (which is the minimum length for a Steiner tree for L, with that topology)
Hence, in Fig. 20, if the edges [a, s1], [b, 5], [s1, 52), [, aa], [s2, 5), [5, 5], [bo, 5],
[5, b3, [5 p] are replaced by the tree shown in Fig. 14(b) (leaving [a,, p] in), then
this new tree for L} has a length which is less than that of T* by at least

2V15+6V3 - V44 +24V3 — length [as, p).

Hence, if (5) holds we reach a contradiction which would finally complete the proof
of Fact 14.

We have seen (see Fig. 21) that tan § <3, i.e., tan a = tan (60°— 6) > 5V3 —8.
Thus,

length[t, by] = 2(5V3 - 8).
Since

length [as, ] <length[as, F] <2 —length[t, by} <2(9—5V3)=0.6795. ..,

.
VL

a,

by
(a) (b)
Fig. 21 Fig. 22

then (5) easily holds. This completes the proof outline for Fact 14. [J
An immediate corollary of this result is the following.

Fact 15. If T* is a full minimum Steiner tree for L%, m =3, then one of the
angles a, B is = 60° (see Fig. 22(a)).

Proof. By Fact 14, a, and b, have a common Steiner point s. Thus, a + B =120°
and Fact 15 follows. [0

Let us call a full tree component $*(X:) trivial if | X;| = 2. By Fact 12, such an X,
must be {ai, a1} or {b,, b..;} for some k.
Fact 16. Suppose a minimum Steiner tree S$* for L, n =2, has a full tree
component S*(X;), where

Xi={a,a.1,...,a}U{b,b,.1,...,b} forsomer<s.
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(We call this a rectangular component with s—r+1 columns.) Then either
s=r+lor X,=1L,

Idea of proof. If n =2, then the result is immediate. Assume n >2 and suppose
w.l.o.g. that s < n. Since S* is a tree on L,, then either a, and a,,, or b, and b,.,
belong to a common full tree component. Assume a, and a,., both belong to
S$*(X;) for some j# i (see Fig. 23).

a

r Os 44
(o]

S+ 1

Fig. 23.

Let [a,, s,] be the first edge in the path from a, to a,.; (s; # s, since X, N X, =
{a.}). By Fact 15, one of the angles a, B is = 60°. If 8 = 60°, then reflect S*(X;)
about the x-axis so that the “new” full tree component for {a,, ..., a,} U{b, ..., b}
now has « = 60°. Thus we may assume a = 60°. By Fact 5 the angle between [s., a.]
and [si, a,] must be exactly equal to 120°. Therefore, [s., s3] is parallel to the x -axis.
However, it now follows by an argument similar to that of Fact 14(ii)(b) that
[s1, a,-1] and [s3, b,_\] are edges of S*,i.e., r = s — 1 which is the desired result. []

We denote by F(2) a rectangular component with 2 columns (see Fig. 7).

Fact 17. The full tree components S*(X;) of L, are either rectangular or trivial.
Furthermore, if two full tree components intersect then one of them is rectangular
and the other one is trivial.

Idea of proof. Suppose both [as, ax.] and [b, be.1] are edges of $*. Then the only
way for these two components to be connected is with a common Steiner point s for
either a. and b. or a.., and b.., (by Fact 15). Suppose a. and b, have a common
Steiner point (the other case is similar). Then, replacing [ax, ax+1] by [@x-1, besi], we
obtain a minimum Steiner tree for L, with a pair of edges meeting at 90°, which
contradicts Fact 5.

Suppose S* has a nontrivial, nonrectangular full tree component S$*(X;). Thus,
by Fact 11, for some k, we have (w.l.o.g.) a.., & X, and ax, b1, b € X, (see Fig.
24). Now, [a«-1, ac] cannot be an edge of S* since if it were, it could be replaced by
the equal length edge [a.«_, bi_:], forming a minimum Steiner tree for L, with an
angle of less than 120°, contradicting Fact 5. 1f a,-, and a, were in a common full
tree component then by applying either Fact 3 or Fact 4 to s, the first Steiner point
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Fig. 24.

in the path from a, to a._,, we reach a contradiction. Therefore, a._; and a, do not
belong to a common full tree component. Also, if no b, belongs to a common full
tree component with a._,, then we would have the edge [a«-», a; ;] in S*, which is
similarly impossible. If a. ,, b. € $*(X;) for some j, then we would also have
b.-1 € $*(X;), which contradicts Fact 6. By symmetry, we also reach a contradiction
if a1, b1 € $*(X;) for some j. Hence, we may assume that a;_,, b, € S*(X;) for
some j. Therefore, by Fact 14, they share a common Steiner point s, i.e., so that
[s, ac] and [s, be-i] are edges of S*(X;) (see Fig. 25). But by Fact 15, one of the
angles a, B is = 60°. As before, we may assume it is 8 (by reflecting the portion of
T*on{ai,...,a-} U{b,, ..., b} if necessary). This implies that the angle between
[s, bc-1] and [s’, b 1] is < 120° which contradicts Fact 5. Hence we cannot have a
nonrectangular, nontrivial full tree component of S*. Of course, two rectangular
components cannot intersect (since if they did, their intersection would have at least
two points, which is impossible.) [J

Fig. 25. Fig. 26.
We have now reduced the study of minimum Steiner trees on ladders L, to the
study of full minimum Steiner trees on (possibly smaller) subladders L, of L..
Let F* denote a full minimum Steiner tree for a ladder L., m =3 (see Fig. 26).
Fact 18. The slope o of [s, s,] satisfies

lo|<2-V3.

Idea of proof. Assume (w.l.o.g.)that o =0. Let p = (- V3, 0) be the point shown
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in Fig. 26 forming an equilateral triangle with a, and b,. If s, lies above the line
through p and a. then there is no way (by a suitable application of Fact 4) to
complete F*. [

We will assume hereafter (w.l.o.g.) that o =0. It follows from Fact 18 that
a < 15°

Let T* denote the subtree of F* induced by the Steiner points of F*.
Fact 19. T* contains no point of degree exceeding 2.

Idea of proof. Let m. denote the number of points of T* which have degree k,
k =1, and assume m;+ m,+--->0. If | T*| denotes the number of points of T*
(i.e., the number of Steiner points of F*), then

> degv=2|T*-2.

vET™

Thus,
> (degv—2)= -2

veT

=m+ > (k—2)m.

k=2
Therefore,
m=2+ > (k—2)m,

k=2
Z2+myt+tmy+->2

by hypothesis. Careful consideration of the facts established up to this point now
shows that there must exist a pair of adjacent points in some row which are not
endpoints and which are connected to a common Steiner point s,.
(i) Suppose the points are by, bi., for some k, 1<k <m —1 (see Fig. 27).
Let us call the directions of line segments [ by, s1], [be1, 51] and [sy, 5.}, directions 1,
I1 and 111, respectively. Since the slope of [b,, s,] is <2—V3 by Fact 18, then the
slope of [b.,, s1] is < — 1. Since we have assumed the slope of [b, s;] is =0, then

Lo //
Ak ag JOk+1
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the slope of [sy, s;] is = 0. Thus, if we start at b.., and proceed along the path P
determined by alternately choosing the directions II and III, until we terminate at a
point a, in the top row of L,, then we must have ¢t = k + 1. In fact, it is not hard to
see that r=k+1. Let L, and L. denote the lines through b., and a..,,
respectively, having direction IIL. It is now not hard to see that some edge [s, s'] of
F* must have s to the left of (or on) L, and s’ to the right of (or on) L,. However,
this forces length [s, s'] > 2, which contradicts Fact 3.

(ii) The case in which the two points are in the top row is handled by rotating the
preceding arguments by 180°. [

Fact 19 implies that T* is a path. Let s, denote the Steiner point of F* common to
a, and b, and let s;,,; denote the Steiner point of F* common to a, and b,.. Every
other Steiner point s is connected to a unique regular point p(s) € L,.. Let us label
the consecutive Steiner points proceeding along T* from s, to s.,.-; by
S0, S1, 82, . . ., S2m -3 (see Fig. 28).

a, a, an
So S
S2 S2m-3
by b, b
Fig. 28.

Fact 20. For any k, 1<k <2m —3, the 3 points p(sc), p(sc+1), p(sc+2) cannot
belong to 3 different columns of L,.

Idea of proof.
(i) Suppose p(si), P(Sc+1), p(sc+2) all belong to the bottom row of L,.. Then for
some i, we must have

p(Sk) = bi, p(5k+1) - bi+1’ p(Sk+2) = biso

(see Fig. 29). The directions of the various edges must be as shown (since T* must
turn in the same direction at sy, i, and si.»). As in the proof of Fact 19, if we start
from b;., and follow the path determined by alternately choosing directions I1I and
IT we must terminate at a;,,. Of course, [s, a:+1] cannot be an edge of F*. But now,
as in the proof of Fact 19 (since i > 1), some edge must span the region bounded by
lines through b, and a;., having direction III. This forces its length to be >2,
which is impossible.
(ii) The other various possibilities are similar and will be left to the reader.
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b; T biy2
Fig. 29.

It follows from Fact 20 that the points in successive columns are connected to T* in
order as we go from s, to s,,_s. If, for some )

p(s) = a, p(sp41) = by,

we say to the (k —1)* column is a top-first column. Otherwise we say it is a
bottom-first column (see Fig. 30). Since, we have made the normalizing assumption
that the slope of [so, s:] is =0 then the 2™ column (i.e., containing a, and b)isa
top-first column.

Fig. 30.

Fact 21.  Suppose F* has b bottom-first columns and m — b — 2 top-first columns.
Then

length F* = (m(2+ V3) =2+ (2b + 2~ m)*)">. (6)

Idea of proof. Let X be any set in the plane and suppose $ is a minimum Steiner
tree in which x and x' are regular points having a common Steiner point (see Fig.
31(a)). Let X' be formed from X by removing x and x’ and adjoining ¢, the
“equilateral triangle”” point determined by x and x’ (cf. Fact 8). Form the Steiner
tree S’ by deleting [s, x], [s, x'] and [s, s'] from S and adding [¢, s'] (see Fig. 31(b)).
By Fact 8, §' is a minimum Steiner tree for X'.

Starting with L,., we can successively replace pairs of points by the appropriate
equilateral points, eventually forming a set with two points (it is rather easy to form
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s|

o]
X!

(a) (b)
Fig. 31.

minimum Steiner trees for such sets). A useful observation in such a reduction is the
following. If the (k — 1)* column is a top-first column (see Fig. 32(a)) and ¢, a. and b,
are replaced by T'= (X', Y’), then

x=x-V3,
y'=y-L
Similarly, if the (k — 1)* column is a bottom-first column (Fig. 32(b)), then
x'=x- \/5,
y=y+1

(These expressions follow at once from Fact 8.) Hence, replacing a, and b, by
t=(— \/3,0) and a, and b, by t'=(2m -2+ V3,0), we see that

Lm—s = (X2m-4, Y2m )

with
Xom-4=Xo— (M — 2)\/3 =—(m— 1)\/3,
Yom-a=Yo—b+(m—2-b)y=m —2-2b.

Thus, the length of F* is just the length of [t._s, t'] which is

(MQ2+V3)=2P+2b+2-mpP)"”
and Fact 21 is proved. [

Gk Gk

t=(x,y) by by

(o) t=(x,y) (b)
Fig. 32.
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Note that the slope o of a line with direction I (e.g., [so, 5]) is given by

m-—2-2b

T M@y —2 @)

It is easily seen that once the slope o is determined then the order of the top-first
and bottom-first columns is completely determined. Of course, to minimize length
F*, one should choose 2b +2 — m as close to zero as possible. The normalization
o =0 implies b<[m/2]-1. If m is odd then by choosing b = [m2]-1=
(m —3)/2 we achieve the minimum length of F*, which is

Ly = ((mQ2+V3)-27+1)", 8)

However, if m is even, then if b = (m —2)/2 is chosen, we obtain ¢ =0 and we
know in this case (by an argument in Fact 16) that we must have m = 2. Thus, for m
even and > 2, the best choice for b is (m — 4)/2 and the length of F* in this case is

(m@2+V3)-2p+4)"

However, for m even, a direct comparison shows that this exceeds m 2+ \/5) -2,
the length of the Steiner tree on L,, formed by alternating F(2)’s and edges (see Fig.
33). Furthermore, an easy calculation shows that

Lo <l. +2+length F(2)

=1, +4+2V3.

This implies that if X; is a full tree component isomorphic to L.., m odd, and S *(Xi)

Fig. 33.

is connected to an adjacent F(2) in $* by an edge, then we should replace that
portion of $* by a full tree on L,... (which will be shorter).
These observations allow us to conclude the main result of the paper.

Theorem. The minimum Steiner trees S*(L,) on L, are given as follows:

(i) Fornodd, S*(L.) is a full Steiner tree, unique up to reflection, having (n — 1)/2
top-first columns alternating with (n — 3)/2 bottom ~first columns (see Fig. 34). The
slope of [so, 51 is (n(2+ V3)~2)"". The length of S*(L.) is (n(2 + V3) = 2 + 1),

(ii) For n even, S*(L,) has n/2 full tree components connected by edges (see Fig.
35(a)). The length of S*(L.) is n(2+ \/5)— 2.

Note that for n even there are in fact 2"~' different minimum Steiner treeson L,
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Fig. 34.

HH XX

(a)

Fig. 35.

corresponding to the different choices for the orientation of the F(2)’s and the rows
of the connecting edges.

Concluding remarks

The preceding analysis leads naturally to the consideration of the structure of the
class of all full (not necessarily minimum) Steiner trees on L,. As mentioned in the
introduction, this turns out to be surprisingly complicated. We give a brief summary
of some of the relevant results. The details will be given in a future paper.

To begin with, we restrict ourselves to full Steiner trees S* for L, in which all
Steiner points are incident to exactly 3 equiangular edges (i.e., each meeting the
other two at 120°).

(i) Suppose the Steiner points of §* induce a path with each pair a,, b, and a,, b,
having common Steiner points and with each ai, b, 1 <k <n, connected to a
unique Steiner point. Such a Steiner tree we call a Type I Steiner tree for L. As
before, it can be shown that the points of L, are connected to Steiner points in
successive columns, so that the columns can again be classified as top-first or
bottom-first. Thus, the tree is specified by the sequence C = (¢, ¢, . . ., ¢._1) where

1 if the k™ column is top-first,
Cx —
~1 if the k™ column is bottom-first.

It can be shown that if we define 8, = 2,-,c, then C corresponds to a realizable
tree (where we have assumed ¢, = 1) iff

Q> 5,.71 6k_1
k n+2V3-3 k+2V3-3
S 8nei 8 +1

O L < = for ¢ = —1,
k n+2V3-3 k+2V3-3 *

|
—

for ¢, =
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A

n=2,b=0L=5464... n=3,b=0,L=925...
n=4,b=0,L =13.082...

n=5b=1,L=16.690...

n=5>b=0,L=16928...
n=6b=0,L=20781...

n=7,b=2L=24145...
Fig. 36.
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n=7,b=2L=24310...

n=7b=2L=24637...

n=8"b=2,L=27928...

n=8>b=0,L=28495...

n=9>b=3L=31604...

n=9,b=1L=31982...
Fig. 36 (contd.)
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n=9b=0,L=32355...

n=10,b=2,L =35.827...

n=10,b=0,L =36.215...

n=11,b=4,L =39.065...

n=11,b=3,1L =39.168. ..

n=11,b=2,L =39371...

n=11,b=0,L =40.076. ..
Fig. 36 (contd.).

197
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for 2<k <n—1. A very intricate analysis of this problem yields the following
result.
Theorem. Let F(n) denote the number of Type 1 full Steiner trees for L,. Then
1 ifn=2,34,
F(n)=4 d*(n—-2)+d*(3n—-2)+1 if n >4 is even,
d*(n-2)+d*3n—-2)+d*(n—1) ifn>4isodd,

where d*(x) denotes the number of odd divisors of x which are greater than 1.

Fig. 37.
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In Table 1 we tabulate a few small values of F(n). We show some of the
corresponding trees in Fig. 36.

Table 1

3

F(n) n  F(n)

10
11

(= Y N Y I S
L e e
NN W

Fig. 38.
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(ii) There is another class of full Steiner trees on L, for which the Steiner points
still induce a path but the pairs a,, b, and a,, b. no longer have common Steiner
points. We call these Type II trees. Their analysis turns out to similar to that of
Type I (although somewhat simpler). We show representatives of several families of
Type II trees in Fig. 37.

(iii) It happens that there are full Steiner trees on L, whose Steiner points induce
trees which are not paths. These are called Type III trees (what else?). At present,
their structure is incompletely understood. We show some of these trees in Fig. 38.
Notice the last tree which is not symmetric about the center. It seems likely (but has
not yet been proved) that for some ¢ > 1, there are more than ¢" Type III trees on
L, for n sufficiently large.
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