The Combinatorial Mathematics
of Scheduling

What is the best way to organize work so that it is finished in the

shortest possible time? Discoveries in mathematics and computer

science reveal the values and limits of various scheduling methods

all areas of human activity. The Vi-
king mission to Mars called for co-
ordinating the activities of more than
20,000 people. Meeting the daily manu-
facturing quota in an automobile plant
can depend on the precise allocation of
manpower and tools. Even the prepara-
tion of a multicourse dinner can present
a nontrivial scheduling problem. It
might appear that there are natural al-
gorithms, or step-by-step procedures,
for constructing highly efficient sched-
ules. That, however, is not the case. Ap-
parently logical ways of constructing
schedules cannot be counted on to per-
form equally well in different situations.
For example, in some instances increas-
ing the number of workers on a job can
actually increase the time required to
meet a schedule. Some of the common-
est and most intuitive scheduling proce-
dures can give rise to unexpected and
even seemingly paradoxical results.
Over the past few years several math-
ematical models of scheduling proces-
ses have been devised and closely ana-
lyzed in an effort to find the causes of
such anomalous results. It was neces-
sary to determine how inefficient dif-
ferent scheduling procedures could be
and how poor performance could be
eliminated or at least minimized. The
research has shown that in most cases
perfect results cannot be expected of
efficient scheduling algorithms. Never-
theless, general guidelines have emerged
for avoiding the pitfalls in scheduling
problems and for finding acceptable so-
lutions to particular problems. Here I
shall describe some recent results of this
kind that apply to one of the most basic
scheduling models. The model deals
with the behavior of the finite sets of
quantities that are involved in schedul-
ing problems. The analysis of the model
demonstrates the productive interaction
that often occurs between computer sci-
ence and mathematics. In this instance
the theory of algorithms is paired with
combinatorial theory (in particular the

124

Scheduling problems arise in almost

by Ronald L. Graham

study of finite sets) to yield important
results in scheduling theory.

In order to provide insight into sched-
uling problems a model must isolate the
essential parts of real scheduling situa-
tions. The basic scheduling model con-
sists of a system of m identical proc-
essors Py,..., P, and a set of tasks
A B,....,T to be performed by the
processors. (The processors could be
workers on an assembly line or physical
devices such as electronic microproces-
sors.) With each task T there is associat-
ed a positive number 7(7T); it is the
amount of time required by the proces-
sor to execute 7, and so it is called the
execution time of 7. Although each
processor is capable of executing each
of the tasks, no processor can execute
more than one task at a time. Moreover,
when a processor begins to execute a
task 7, it must continue executing the
task until 7 is completed.

A scheduling algorithm is the set of
rules by which tasks are assigned to
the individual processors; changing the
rules changes the algorithm. In the mod-
el the order in which tasks are selected
for execution depends on two factors: a
collection of precedence constraints and
a priority list. If task R must be complet-
ed before task S can be started, R is
called a predecessor of S. This relation
is called a precedence constraint and
is written R — S. The priority list L is
an ordering of the tasks according to
the preferences of the scheduler:
L= (B,CR,...). The list is not re-
quired to be consistent with any prec-
edence constraints that may exist. This
model is often called the priority-list
scheduling model because changing the
priority list is the only way to alter the
schedules the model constructs.

The operation of the model begins at
time ¢ = 0 with all the processors scan-
ning the priority list of the set of tasks
from the beginning in search of “ready
tasks.” A task is said to be ready for
execution if all its predecessors have
been completed and no processor has

begun to execute it. Of course, at time
t = 0 the ready tasks are those with no
predecessors. If two or more processors
are competing for a task, the task is as-
signed to the processor P; that has the
lowest index number i. When a proces-
sor cannot find a ready task, it stops
scanning and becomes idle. The proces-
sor remains idle until a task is complet-
ed somewhere in. the system. The task
might be a predecessor of other tasks
that would become ready on its comple-
tion. Therefore whenever a task is com-
pleted, all idle processors instantaneous-
ly begin to scan the priority list from the
beginning. The schedule ends when the
final task has been completed; the finish-
ing time is denoted . (For the purpose
of simplification the time spent in scan-
ning the list is not included in the operat-
ing time of the model.)

he model, which describes a typical

scheduling situation, was studied to
find answers to the following questions:
How does the finishing time depend on
the choice of the priority list? How does
it depend on the precedence constraints?
How does it depend on the execution
times? How does it depend on the num-
ber of processors? In particular, how
can the list be chosen in order to mini-
mize the finishing time? In other words,
the model serves to evaluate the sched-
uling algorithm by assessing its per-
formance under different conditions,
that is, with faster processors, fewer
tasks and so on.

The model does not apply to all
scheduling situations. For example,
there is no consideration of the proba-
bilistic aspects of scheduling in which,
say, the execution times of tasks are not
fixed but random, according to some
distribution of probabilities. The model
also regards finishing time as the only
measure of algorithm performance,
when actually there can be several oth-
ers. On the other hand, the model does
incorporate a number of features that
are common to many real situations.

L=ABCDEFGHIJ

El7
Nuxi:;//QOmw
P1 A E G
wx%—eo//?7 "
\D/sw 5P B C D F H / J

cRO————>
H/2)
J/8

A SCHEDULING MODEL isolates the essential elements of real
scheduling situations. It can be used to study the behavior of algo-
rithms, or step-by-step procedures, for constructing efficient sched-
ules. The basic scheduling model consists of a set of identical proces-
sors and a set of tasks to be performed by the processors according to
certain rules. With each task 7 there is associated an execution time
7(T), equal to the amount of time required to execute 7. In the ex-
ample shown in this illustration there are 10 tasks, 4, B, ..., J, and two
processors, P and P, The tasks to be executed are related by various
precedence constraints. Task @ is said to be a predecessor of task S
if 0 must be completed before S can be started; this relation is called
a precedence constraint and is written Q— S. A scheduling algorithm
is the set of rules by which tasks are assigned to processors. The as-
signment of tasks in the model is determined by the use of a priority
list, an ordering of the tasks according to the scheduler’s preferences.
It is not required to be consistent with any precedence constraints
that may exist. The priority list L for the example is shown at the top

L=(ABCH DEFGIJ

E/7

left; the graph at the bottom left displays the tasks (open circles)
and the precedence constraints among the tasks (arrows). Each task
T in the graph is labeled with its name and execution time: 7/7(T).
The distribution of the tasks begins with all processors scanning the
priority list from the beginning in search of ready tasks, that is, tasks
whose precedence constraints have been satisfied. When a ready task
is located, it is always assigned to the processor P; with the lowest in-
dex i. In this case 4 is the first ready task in the list L and so it is as-
signed to the processor P;. After a task has been assigned to a proces-
sor the unoccupied processors resume scanning the list. The timing
diagram at the right shows the schedule, or allocation of processing
time, determined by the rules of the model. The shaded areas in the
diagram represent periods when a processor was idle. In the model a
processor may become idle only if there is no ready task in the sys-
tem, and whenever a task is completed, all idle processors begin scan-
ning the list again. The schedule is completed when all the tasks in
the set have been executed. In this example the finishing time o is 33.

1 ;
P, A E 1 J
B/2 O——> Fr7 p
\D/S S ng B lc [H] D F G
Cci3 O——>
Hi2
Ji8
L=(ABCDEFGHIY
Els
A/7C<2>OG/17
1
F/ P A i
Bly O—>0~ 6
NG VT L AT IR
o—
Cl2 H/ 1 O

Ji7
L=ABCDEFGHILY

Ef7
G/18
a5 O\

O/O P A E

B/2 O—>D?/H7\> ys P2 B D I2
3 T
O pf ¢ |~ J
ciB3 O—> : .
HI2 e

Ji8

CHANGING THE PARAMETERS of the basic scheduling model
can have unpredictable and often undesirable resuits. For example,
when the priority list L of the scheduling probiem in the illustration
at the top of the page is rearranged (fop), the finishing time increases
to 35. A more surprising schedule results when all the execution times

in the problem are decreased by 1 (middle): the finishing time in-
creases to 36, Moreover, with the decreased execution times the fin-
ishing time is always at least)8, no matter what priority list is chosen.
Even when third processor is added to original system (botfom), fin-
ishing time does not decrease but increases to 38 for any choice of list.

29

125

L =ABCDEFGHIJKLM=(745867537,6,5543,12)

w =22
Lopt = (12,7,7,6,5,5,4,4,6,5,5, 3, 3)

P, 12

P, 7 5

P, 7 5

P, 6 6

Ps 5 4 3

Pg 5 4 3
. -22-2-1 wopt = 12
wopt 12 6

A SCHEDULE 1S OPTIMUM for a particular set of tasks if its finishing time is the shortest
that can be achieved by any rearrangement of the priority list for the tasks, In the scheduling
problem shown here there are no precedence constraints among the tasks, and so the tasks are
distributed to the processors in the order in which they appear in the priority list L. The finish-
ing time of the resulting schedule (fop) is ® = 22; during the schedule many of the processors
are idle for long periods of time. A different ordering of the tasks results in a schedule with a
shorter finishing time (bottom). This schedule is clearly optimum because no processor is idle
at any point before the finishing time w,,; = 12, The ratio of the two finishing times is the
largest possible because it has been proved that o/, is never greater than 2 — 1/m, where
m is the number of processors utilized. Tasks in illustration are identified by their execution
times; since tasks are independent (there are no precedence constraints), no confusion results,

L*=(9,9,8,87,7,6,6,5,5,5)

P, 9 5
Py 9 5
P3 8 6

!
Py 8 6
Pg 7 7

Lopt =(9.9,8,8,5,5,7,7,6,6,5)
P, 9 6
i
P, 9 6
Py 8 7
P, 8 7
Py 5 5 5
@ =19 =4 — 1

wopt 15 3

IN THE DECREASING-LIST ALGORITHM demonstrated here the more time-consuming
tasks are executed as early as possible in the schedule so that there is less chance of some of the
processors being idle while others are still operating near the end of the schedule. In the algo-
rithm a priority list L* is formed by arranging the tasks in decreasing order of execution times.
When there are precedence constraints among the tasks, the algorithm can perform quite bad-
ly, but when the tasks are independent, the decreasing-list algorithm is guaranteed to give re-
sults that are well within the 2 — 1/m bound. In fact, for any list of tasks L, w* /v, (ratio of
finishing time of decreasing-list schedule for a set of tasks to optimum finishing time for the
set) is never more than 4/3 — 1/3m. Five-processor example shown here attains bound exactly.

126

The processors of the model could be
typists working for a company and the
tasks could be a set of reports to be
typed. Although the company presi-
dent’s report might be at the head of the
priority list, his report would probably
depend on the results of subordinates’
reports, that is, those reports would be
predecessors of the president’s. The
processors of the model could aiso rep-
resent minicomputers in a multiprocess-
ing computer system that is executing
the various subroutines of a complex
program. Although the model is rather
simple, it does have sufficient structure
to exhibit almost the full range of diffi-
culties encountered in general combina-
torial scheduling problems. An example
will help to demonstrate this fact.
Assume that there are two processors,
P, and P,, and 10 tasks to be executed,
arranged ina list: L=(4, B,..., J). The
precedence constraints among the tasks
and the execution times can be conve-
niently displayed in a diagram in which
each open circle represents a task T,
each arrow represents a precedence con-
straint and the tasks are labeled 7/71(T):

E/7

A/8 G/18

B/2 O—>0— Fr1
SNP/I~—3,0 /8
Cc/30—> '

: H/2 O J/8
At time 7 = 0 the two processors begin
to scan L and immediately arrive at task
A, which, having no predecessors, is
ready to be executed. According to the
rules of the model, A is assigned to the
processor P; because it has the lower
index number. The next ready task is B,
and so it is assigned to P,. At time ¢ = 2,
B is completed and P, scans L again,
finds that task C is ready and begins to
execute it. The process continues until
time ¢ = 33, when all 10 tasks are com-
pleted [see top illustration on preceding
pagel. Since neither processor was idle at
any time before ¢ = 33, the list L is opti-
mum in the sense that no matter how the
tasks are arranged in a list it is not possi-
ble to finish all of them in a shorter
amount of time.

he finishing time w = 33 cannot be

improved by changing the list. What
happens when the other parameters of
the model—the execution times and the
number of processors—are varied? The
resultsare surprising [see bottom illustra-
tion on preceding page). If all the execu-
tion times in the example are decreased
by 1, the finishing time increases to 36.
It is tempting to try to explain this odd
result by postulating that the priority
list L is simply an extremely poor choice
for the revised set of execution times and
that with a better priority list the fin-
ishing time would be reduced. A little

experimentation shows, however, that
with the new execution times no matter
how the tasks are arranged the finish-
ing time is never less than 36.

Suppose another processor is added to
the original system. With a 50 percent
increase in processing capability it is not
unreasonable to expect a comparable
decrease in the finishing time. In this in-
stance, however, the finishing time is 38,
no matter what priority list is chosen.

Two elements of the scheduling mod-
el are responsible for this unpredict-
able and undesirable behavior. First, no
processor is allowed to be idle if there is
a ready task in the system; second, once
a processor begins to execute a task it
cannot stop until the task is completed.
As a result the processors are forced to

begin the execution of relatively unim-

portant tasks (tasks that are short or that
are involved in few precedence con-
straints), and once they have begun they
cannot interrupt execution to begin
more urgent tasks that subsequently be-
come ready. Of course, the structure of
the model could be altered, but the fact
is that it reflects many real scheduling
situations. Hence it is of interest to know
just how much of an effect these aspects
of the model can have on the schedules
that are created. There is an unexpected-
ly simple answer to the question.

Imagine that a set of tasks is executed
twice: on one occasion with m proces-
sors, a particular priority list, a set of
precedence constraints and a set of ex-
ecution times, and on another occa-
sion with m' processors, a different list,
a weaker set of precedence constraints
and a set of reduced execution times.
The finishing time is denoted by w for
the first schedule and by o’ for the sec-
ond. The example with two processors
and 10 tasks showed that o’/ w, the ratio
of the finishing times, can be greater
than 1, that is, improving the values of
the model parameters can cause an un-
avoidable increase in the finishing time.
There is, however, a limit to the ratio
and thus a limit on the adverse effects of
the model structure. Some years ago I
was able to show that o’/ is always less
than or equal to 1+ (m — 1)/m’, that
is, o' /w< 1+ (m— 1)/m'. Moreover,
there are examples where o'/w is equal
to the upper bound 1 + (m — 1)/m’, and
so the bound cannot be improved by
substituting a smaller quantity on the
right-hand side of the inequality. (If a
smaller bound were used, the examples
would contradict the inequality.)

In instances where the schedules that
are produced by different priority lists
are compared, the number of processors
remains the same. Therefore m is equal
to m’ and the inequality takes on its most
elegant form: o'/w < 2 — 1/m. For ex-
ample, if there are three processors, m
equals 3, and so w'/w is never more
than 5/3. This result means that for any
set of tasks scheduled on three proces-
sors even utilizing the worst possible list

L/10
Al O~

o AR I J
BNO K/3
Py E
ile)
Py F
DO
P, G
ENO0O
wep
EIf0O
GNOO
P, Al H E
P8l 1 F
Pslc| v G
P,iD| K L

wopt = 14

CRITICAL-PATH SCHEDULING is one of the commonest scheduling algorithms, although
it does not always perform well. In a critical-path schedule such as the one shown at the top of
the illustration tasks are distributed to processors according to the relative urgency of the tasks,
that is, according to the length (the sum of the execution times) of the various processing chains
each task heads in the unexecuted part of the precedence-constraint diagram. The longest
chains in the diagram are called the critical paths because those chains are most likely to cause
bottlenecks in the execution of the set of tasks. A task that heads a current critical path is al-
ways chosen as the next task to be executed in critical-path scheduling. At time # = 0 in this exam-
pletherearefour critical paths,each of length14:4 - H—L, A —I—L,A—J—Land4—K— L.
Therefore task A is the first task to be executed, and it is assigned to processor P, because P;
has a lower index number than P;, P3 or P4 In some instances critical-path schedules are ex-
tremely efficient, but for this particular problem ocp, finishing time of critical-path sched-
ule, is almost twice w,,;, finishing time of optimum schedule shown at bottom of illustration.

A

CRITICAL-PATH SCHEDULES ARE OPTIMUM for scheduling problems in which all the
execution times are equal and the set of precedence constraints is treelike, that is, no task has
more than one successor. Because all the execution times are equal (say 1) in this special case,
critical-path scheduling can be accomplished by assigning to each task T a number L(T)
equal to the number of tasks in the longest chain headed by 7. L(T) is called the level of 7, and
the schedule is constructed by always choosing a ready task with the highest level as the next
task to be executed. In the three-processor example shown here the levels are indicated in col-
or, At time ¢ = 0 the ready tasks are 4, B, C, D, E, H, K, N and O. Tasks 4, B, C, D and E have
the highest level, 6, and A is chosen to be the first task executed. T. C. Hu of University of Cali-
fornia at San Diego has shown that the level algorithm always creates optimum schedules in
this special case, and so wcp = 7 is the best possible finishing time for this particular problem.

127

can increase the finishing time obtained
with the best possible list by no more
than 66%; percent. The bound 2 — 1/m
is a performance guarantee. It ensures
that no matter how complicated or ex-
otic a system of tasks, precedence con-
straints and execution times may be and
no matter how cleverly or carelessly a
list is chosen, the ratio of finishing times
o'/ w is still never greater than2 — 1/m.

t is obvious that within this bound a
good or bad choice of a priority list

can still make a great difference in the
finishing time of a schedule. Common
sense suggests that the best lists might be
those in which the tasks with the longest
execution times appear near the begin-
ning of the list. In that case only relative-
ly small additions to processor usage
would be made at the end of the sched-
ule and there would be less chance that
some of the processors would be idle
while others were still operating.

One of the commonest scheduling al-
gorithms consists in forming a priority
list L* by placing the tasks in decreasing
order of execution times and then exe-
cuting the tasks according to the rules of
the model. The finishing time for this
decreasing-list algorithm is denoted w*

[see bottom illustration on page 126]. How
good is the algorithm? In other words,
how close is w* t0 @, the optimum
finishing time? When there are prece-
dence constraints among the tasks, the
algorithm can create the worst possible
schedule, that is, the ratio of v* t0 @y
can attain the bound 2 — 1/m.

When there are no precedence con-
straints, the tasks are distributed to the
processors in the order given in the pri-
ority list. In that case the tasks are said
to be independent, and it has been shown
that the decreasing-list algorithm will
always give results that are well within
the 2 — 1/m bound. In fact, for a set of
independent tasks the ratio w*/w,, is
never more than 4/3 — 1/3m, which is
substantially less than 2 — 1/m, when
m becomes large. Since there are in-
stances where the ratio attains the bound,
the bound cannot be improved. The in-
equality o* /., < 4/3 — 1/3m guaran-
tees that applying the decreasing-list al-
gorithm to a set of independent tasks
will never create a schedule whose fin-
ishing time is more than 33, percent
over the optimum.

At present there is no algorithm for
scheduling sets of tasks with precedence
constraints that compares with the de-

(7,6,3,2)

L =ABCFEDGUJ,IH)

weGg =

THE CG ALGORITHM creates optimum schedules for the special scheduling problem in
which all the execution times are equal and only two processors execute the set of tasks. In this
algorithm priority numbers (color) are assigned to each task so that tasks heading long process-
ing chains or having many successors receive higher priority. Before the CG algorithm can be
implemented all extraneous precedence constraints must be removed from the diagram of tasks
to be executed. (For example, if 4 — B and B— C, then 4 — C should be eliminated.) A reduced
diagram is shown at the top left; the execution times have been omitted from the diagram be-
cause they are all equal, say, to 1. The CG algorithm begins by numbering the tasks as is shown
at the top right. First, the number 1 is assigned to some task that has no successors, and if there
are other tasks without successors, they are numbered 2, 3 and so on. In the illustration task H,
which has no successors, was numbered 1 and tasks 7 and J were respectively numbered 2 and
3. Thereafter for each task for which all the successors have been numbered the decreasing se-
quence of all the successors’ numbers is formed. The next task to be assigned a number is al-
ways the one whose sequence is first in the dictionary order (5, 3, 2 comes before 6, 1; 5, 4, 3; 5,
3, 2, 1, and so on) of the established sequences. For example, 7, 6, 3, 2, the sequence for tasks
B and C in the illustration, comes before 7, 6, 5, the sequence for task 4, Therefore the num-
bers 8 and 9 are assigned to B and C, and 10 is assigned to 4. When all tasks have been numbered,
priority list L is formed by arranging tasks in decreasing order of assigned numbers. Timing di-
agram at bottom of illustration shows that CG schedule for tasks 4, B, ..., H is indeed optimum,

128

creasing-list algorithm for independent
tasks. In fact, there is no known efficient
procedure for constructing lists of non-
independent tasks whose schedules for
three or more processors are guaranteed
to finish in 2 — € times the optimum fin-
ishing time for some positive number e.
The inequality o'/ < 2 — 1/m shows,
however, that the schedule for even the
worst possible list has a finishing time
that is less than twice the optimum.
Hence there is clearly much progress to
be made in this area.

The preceding discussion raises an ob-
vious question: Why should so much ef-
fort be devoted to creating schedules
that are good but not the best? Why not
try to find the optimum schedule for a
set of tasks? One way to do so would be
to examine all the possible schedules for
the tasks and then choose the one with
the shortest finishing time. The trouble
with this brute-force approach is that as
the number of tasks in a set becomes
large the number of possible priority
lists (and thus the number of schedules)
grows so explosively that there is no
hope of examining even a small fraction
of them. If there are n tasks in the set,
the number of different lists is n!, or
n(n — 1)(n — 2)~1, a very large num-
ber even for relatively small values of n.
For example, when there are 20 tasks,
even if a computer could check as many
as a million schedules per second, it
would take more than 70,000 years to
check all 20! lists.

The number of possibie lists n! (and
hence the number of operations and the
computer time needed for checking the
schedules) is an exponential function of
the number of tasks n. Exponential
functions increase rapidly as the value
of the variable » increases. A polynomi-
al function, however, say n2, does not
explode as rapidly as n increases. It
would be practical to insist on optimum
schedules if an algorithm for finding
optimum schedules could be found
in which the number of computational
steps grows as a polynomial function of
the number of tasks.

It seems highly unlikely that such an
algorithm will be found. This gloomy
prospect is the result of the fundamental
work of Stephen A. Cook of the Univer-
sity of Toronto, who in 1971 introduced
the concept of NP-complete, or nonde-
terministic- polynomial-time-complete,
problems [see “The Efficiency of Algo-
rithms,” by Harry R. Lewis and Christos
H. Papadimitriou; SCIENTIFIC AMERI-
caN, January]. Hundreds of problems
notorious for their computational in-
tractability are now known to belong to
this class of problems. NP-complete
problems have two important proper-
ties. First, all methods, or algorithms,
currently known for finding general so-
lutions to these problems require expo-
nentially increasing amounts of time
and thus are extremely inefficient. Sec-

ond, if any one of the NP-complete
problems had an efficient, or polyno-
mial-time, solution, then all of them
would. It seems highly probable, but it
has not yet been proved, that the difficul-
ty in finding efficient procedures for
solving these problems is inherent in
NP-complete problems; it appears that
no such procedures can exist.

Most scheduling problems are NP-
complete. In fact, even the comparative-
ly simple situation in which there are no
precedence constraints and only two
processors presents an NP-complete
problem. The discoveries about NP-
completeness changed the direction of
research on scheduling. Earlier efforts
were directed at finding optimum, or ex-
act, solutions to scheduling problems,
but now most attention has been turned
in the more fruitful direction of deter-
mining approximate solutions easily, of
finding efficient methods that are guar-
anteed to give close to optimum results.
The decreasing-list algorithm for sched-
uling independent tasks, guaranteed to
finish within 33 percent of the opti-
mum finishing time, exemplifies this
new approach.

The decreasing-list algorithm
achieves its close to optimum finishing
time by doing a certain amount of work.
The n tasks to be executed must be sort-
ed into a decreasing list before they are
distributed to the processors. That sort-
ing can be accomplished in an amount
of time, or a number of computational
steps, that is proportional to nlogsn.
As n increases, nlogyn increases only
slightly faster, and so the algorithm is
acceptably efficient.

By doing more work it is possible to
obtain schedules that are even clos-
er to the optimum than those construct-
ed with the decreasing-list algorithm.
Consider a two-processor system. One
way to obtain such superior schedules
is to choose, for some integer k, the 2%
longest tasks, construct the optimum
schedule for these tasks and then sched-
ule the remaining tasks arbitrarily. If the
finishing time of this schedule is de-
noted w,, then it can be shown that
0/ < 1+ 1/(2k + 2). For a set of
n tasks the entire procedure can be ac-
complished in at most 2kn + 22* opera-
tions. (The term 2kn comes from choos-
ing the 2k longest tasks and the term 22*
from examining all possible schedules
for the 2k tasks on the two processors.)
Since k is a fixed number, the function
2kn + 22k is a polynomial function of
n, not an exponential one, and it grows
moderately as n increases. For exam-
ple, if k is 3, then wz/w,, < 9/8 and
the amount of work required is propor-
tional to at most 6n + 64. In general any
degree of accuracy can be obtained with
sufficient work. Of course, the amount
of work required can rise rapidly; for
example, obtaining a value of o, that is
guaranteed to be within 2 percent of the

SUM = 5 x 101

s N
1415926535 5820974944 8979323846 5923078164 2643383279
8214808651 4811174502 3282306647 8410270193 0038446095
4428810975 4564856692 6659334461 3460348610 2847564823
7245870066 7892590360 0631558817 0113305305 4881520920
3305727036 0744623799 5759591953 6274956735 0921861173
9833673362 6094370277 4406566430 0539217176 8602139494
0005681271 1468440901 4526356082 2249534301 7785771342
4201995611 5187072113 2129021960 4999999837 8640344181
5024459455 7101000313 3469083026 7838752886 4252230825
5982534904 8903894223 2875546873 2858849455 1159562863
0628620899 5028841971 8628034825 6939937510 3421170679
8521105559 5058223172 6446229489 5359408128 5493038196
4543266482 3786783165 1339360726 27120190091 0249141273
4882046652 9628292540 1384146951 9171536436 9415116094
1885752724 8193261179 8912279381 3105118548 8301194912
2931767523 6395224737 8467481846 1907021798 7669405132
4654958537 7577896091 1050792279 7363717872 6892589235
2978049951 5981362977 0597317328 4771309960 1609631859
5875332083 3344685035 8142061717 2619311881 7669147303
9550031194 8823537875 6252505467 9375195778 4157424218
x10
s N
CAPACITY = CAPACITY =
5 x 1010 5 x 1010

BIN-PACKING, another type of scheduling problem, involves a set of items, or weights, and
a collection of identical bins with a fixed weight capacity; the problem consists in packing all
the weights of the set into a minimum number of bins. The difficulty in obtaining precise solu-
tions to bin-packing problems is demonstrated in this example. The total of the 100 weights
shown is § X 1011, Can the weights be packed into 10 bins of capacity 5 X 101°? The number
of possible packings for this relatively small group of weights is so large that even if all the com-
puting power in the world were applied, it is extremely unlikely that an answer to the question
would be found. Most scheduling problems are similarly complex, and so many algorithms are
designed to create packings or schedules guaranteed only to be reasonably close to optimum.

optimum can take an amount of time
proportional to 48n + 248, which would
be enough to exhaust more than a few
computer budgets.

This type of behavior should not be
too surprising. Since an exponentially
increasing amount of time seems to be
necessary for finding an optimum solu-
tion, it makes sense for the cost of ap-
proximate solutions to behave in the
same way as the guaranteed accuracy of
the solutions increases. What is surpris-
ing is that the exponential increase in
time can be avoided; there is a method
for constructing schedules for indepen-
dent tasks that are guaranteed to be
quite close to the optimum that requires
polynomially increasing amounts of
time. Oscar H. Ibarra of the University
of Minnesota and Chul Kim of the Uni-
versity of Maryland have recently de-
veloped an efficient algorithm for con-
structing schedules for two processors
that have a finishing time w; for which
wp/we < 1+ 1/k. Implementing the
algorithm requires an amount of time
proportional to n + kilogn. (When n
and k are large, the value of n + k4logn
is usually much smaller than 22¢.) Sartaj
K. Sahni of the University of Minnesota
has extended the procedure to create ef-
ficient algorithms that can be applied
to more than two processors. These pro-
cedures involve a clever combination
of techniques that are beyond the scope
of this discussion, but this kind of ap-
proximation may well be able to guar-

antee close to optimum results at a cost
of reasonable amounts of time.

Although research into NP-complete-
ness indicates that in general no efficient
techniques will be found for construct-
ing optimum schedules, there are many
interesting special cases of scheduling
problems that are not NP-complete and
that it is possible to construct optimum
schedules for in polynomial time. Much
of the complexity in scheduling prob-
lems is derived from the intricate struc-
ture of precedence constraints and from
the complicated relations among the ex-
ecution times. Limiting one or both of
these factors can result in the kinds of
special cases for which optimum sched-
ules can be found efficiently.

For example, assume that there is a
scheduling situation with an arbi-
trary number of processors where all the
processing times are equal and the set of
precedence constraints is treelike, that
is, every task has at most one successor.
In this instance “critical path” schedul-
ing, one of the commonest scheduling
methods, will always create optimum
schedules [see top illustration on page
127). In critical-path scheduling the
tasks are assigned to processors accord-
ing to the length of the various prece-
dence chains they head in the diagram
of precedence constraints. The longest
chains in the unexecuted part of the dia-
gram are the ones that have the greatest
sum of execution times; they are called

129

the critical paths because their tasks are
the ones most likely to be the bottle-
necks in the execution of the set of tasks.
In critical-path scheduling a task that
heads a current critical path is always
chosen as the next task to be executed.

T. C. Hu of the University of Califor-
nia at San Diego proved in 1961 that
critical-path schedules are optimum for
the special case of treelike precedence
constraints and equal execution times.
Hu'’s result was one of the first in sched-
uling theory. Because in this special case
all the execution times are equal, the
critical-path scheduling consists in as-
signing to each task 7 a “level” L(T)
equal to the number of tasks in the long-
est chain headed by T [see bottom illus-
tration on page 127]. Whenever a proces-
sor is available, a ready task with the
highest level is assigned to it.

In another special case of scheduling
no limit is placed on the structure of the
precedence constraints but all the proc-
essing times must be equal and only two
processors execute the set of tasks.
There are now several methods for de-

termining optimum schedules in this sit-
uation. One of them, sometimes called
the CG algorithm, was developed in
1972 by Edward G. Coffman of the Uni-
versity of California at Santa Barbara
and me. (CG stands for Coffman and
Graham.) It is much in the spirit of the
level algorithm for the case of treelike
precedence constraints. In the CG algo-
rithm, however, the order in which the
tasks are executed depends on all the
chains headed by each task rather than
on a single longest chain, as is the case in
the level algorithm.

Before the CG algorithm can be ap-
plied it is necessary to remove all extra-
neous precedence constraints from the
diagram of the tasks to be executed. For
example, if 4— B and B— C, then the
precedence constraint 4— C can be
eliminated. This process can be accom-
plished in at most n28! operations for a
set of n tasks. The CG algorithm begins
by numbering the tasks in the set [see
illustration on page 128). First the num-
ber 1 is assigned to some task that has no
successors. Thereafter for each task for

L=(6,6666,86, 6, 10,10, 10, 10, 10, 10, 10, 16, 16, 16, 34, 34, 34, 34, 34, 34, 34, 34, 34,
34, 51, 51, 61, 51, 51, 51, 51, 51, 51, 51) = (6(x 7}, 10(x 7}, 16{~3}, 34(« 10}, 51¢ ~10})

10 BIN CAPACITY
=101

10

10

10 16

6

e 16

6

5 51

6 10

6

5 10 FF(L) = 17

(x5) (%10
ré

16 10

34 34

51 51

OPT(L) = 10

(x3) (x7)

IN THE FIRST-FIT PACKING ALGORITHM weights are packed into bins By, By,... in the
order in which the weights appear in their priority list. (If there is no priority list, the weights
are arbitrarily arranged into one.) Each weight is placed in the first bin into which it fits. In
other words, the weight is packed in the bin B; with the smallest index i where the addition of
the weight does not make the total of the weights in the bin exceed the fixed weight capacity.
The first-fit packing of the list L shown at the top of the illustration is fairly efficient: FF(L),
the number of bins required, equals 17. A more efficient packing of L is shown at the bottom.
This 10-bin packing is clearly optimum, since there is no wasted space in any of the bins, The
example demonstrates worst possible performance of first-fit packing algorithm because it at-
tains bound that has been established for algorithm: FF(L) < (17/10)0PT(L), for any list L for
which OPT(L) is a multiple of 10. Numbers of multiple weights and bins are indicated in color.

130

which all the successors have been num-
bered the decreasing sequence of all the
successors’ numbers is formed. The next
task to be given a number is always the
one whose sequence is first in the “dic-
tionary order” of the established se-
quences. (In dictionary order 5, 3, 2
comes before 6, 1; 5, 4,2;5,3,2, 1, and
so on.) After all the tasks have been
numbered from 1 to n the priority list is
constructed by placing the tasks in de-
creasing numerical order. It has been
shown that the schedule constructed
with this list is always optimum in the
special case of two processors and equal
execution times. Basically the CG algo-
rithm works because it gives larger num-
bers and thus higher priority to tasks
that either head long chains or have
many successors. The numbering can be
done in approximately n2 operations,
and so the algorithm is quite efficient.

The CG algorithm is only one of a
variety of techniques that can be applied
to special scheduling problems to get
optimum results. Perhaps extensions of
these techniques will lead to equally
successful algorithms for similar prob-
lems, such as the problem of three proc-
essors with a set of tasks that have equal
execution times. It should be noted,
however, that even the slightly less spe-
cial case of two processors with a set of
tasks that have execution times of either
one unit or two units has recently been
shown to be NP-complete.

So far I have discussed only one type of
scheduling problem, but scheduling
problems arise in many places and in
many different forms. One of the most
interesting problems turns the basic
scheduling model around; instead of fix-
ing the number of processors and trying
to minimize the finishing time, the prob-
lem is to try to complete the execution
of a set of tasks by a fixed time with a
minimum number of processors. In oth-
er words, the problem asks how few
processors will suffice to execute a given
set of tasks by a fixed deadline.

When the tasks are independent, this
scheduling problem is stated in a differ-
ent way and is called the bin-packing
problem. In a model of the standard bin-
packing problem there is a set of items
I,I,; each item I, has a weight w;.
The problem is to pack all the items into
a minimum number of bins By, B, ... s0
that the total weight of the items in each
bin does not exceed some fixed weight
W. (In the terminology of the basic
scheduling model the items are tasks,
the weights are execution times, the bins
are processors and the fixed weight is a
fixed finishing time.)

The bin-packing problem arises in a
variety of guises in many practical situa-
tions. A plumber must cut a set of pipes
of different lengths from a minimum
number of standard-length pipes; a tele-
vision network would like to schedule its
commercials of varying lengths in a

>7
L = (449252 (x7) 127 (x5) 106 (x4) 84 (=2r42%37, 37, 12 (x3) 10 (x6) 9 (x2)

12 —=10 10 10 9 37 €
il =2 127 84
106 — BIN CAPACITY
252 252 252 o1 25 - 524
127 127
106
499,
127 106
252 252 252 252
127 106
L=L - (47} FFD(L) = 7
== .
2857\
252 2 108 .
52 252 z
8735
127
127
106
449
127 106
252 252 252 252
127 108

FIRST-FIT DECREASING PACKING ALGORITHM improves
on the first-fit packing algorithm by packing larger weights earlier.
In the first-fit decreasing packing algorithm the list of weights to be
packed is rearranged so that the weights are in decreasing order, and
then the first-fit packing algorithm is applied to the altered list. In the

y

be 1 >|

IN TWO-DIMENSIONAL BIN-PACKING PROBLEM a list of
planar regions, possibly of different sizes and shapes, must be placed
without overlapping on a minimum number of identical regions. Plac-
ing sewing patterns on pieces of material is a common instance of this
type of problem. Solutions to two-dimensional bin-packing problems
are elusive, even when the shapes involved are highly regular. This
fact is demonstrated by the following problem: How many squares
with sides of unit length can be placed inside a larger square with sides
of length a? If a is an integer, the problem is simple, but if a is not
an integer (say a equals N + 1/4 for some integer N), the problem is
more interesting. One obvious solution to the problem is to pack the

FFD(L') = 8

first-fit decreasing packing of L (fop) the number of bins required,
FFD(L) =17, is clearly optimum since each bin is filled to capacity. Like
most scheduling algorithms, packing algorithms are subject to unpre-
dictable behavior. When a weight is removed from L (bottom), addi-
tional bin is required for first-fit decreasing packing of smaller list.

a X a region by filling an N X N square with N2 unit squares and
sacrificing the uncovered area (color) of nearly /2 square units as
unavoidable waste (leff). After experimenting with other packings
(right) it is tempting to conclude that no improvement can be made on
the obvious packing, but surprisingly this is not the case. Paul Erdos,
Hugh Montgomery and the author have recently proved that when o
becomes large, there are packings for any o X a square that leave
no more than a634. square units of uncovered area, significantly
less than the a/2 square units wasted in obvious packing. It has not
yet been determined how small an area can be left uncovered when
o becomes very large, although a5 seems to be a likely possibility.

131

132

minimum number of program breaks; a
paper manufacturer must furnish his
customers with rolls of paper of differ-
ent widths that he slices from a mini-
mum number of standard rolls. In gen-
eral bin-packing problems are extreme-
ly difficult to solve. At present the only
known methods for producing optimum
packings (those that require the mini-
mum number of bins) involve examin-
ing essentially all the possible packings
and then choosing the best. Like most
scheduling problems, bin-packing is
NP-complete, and so it is likely that any
general algorithm for producing opti-
mum packings will be similarly flawed.
Therefore many bin-packing algorithms
are designed to create packings that are
reasonably close to the optimum.

In considering the bin-packing prob-
lem it is convenient to arbitrarily ar-
range the weights of the items into a list:
L = (wy, wq,...,w,). Since there are no
precedence constraints, no confusion
will arise from identifying an item with
its weight, and L can be regarded as a list
of the items to be packed. One obvious
way to pack the weights of L is called the
first-fit packing algorithm [see illustra-
tion on page 130]. Under the rules of this
algorithm the weights are placed in bins
in the order of their appearance in L:
wy first, we second and so on. When it
is wy's turn to be packed, it is put into
the first bin in which it fits, that is, into
the bin B;, with the smallest index 7 that
can accommodate the weight. (A weight
wy, fits into a bin if the addition of w, to
the weights already in the bin does not
make the total of the weights exceed W)

How good a scheduling algorithm is
first-fit packing? In other words, if
FF(L) denotes the number of bins re-
quired when the first-fit packing algo-
rithm is applied to L and OPT(L) de-
notes the number of bins required in an
optimum packing of the weights of L,
how much larger than OPT(L) can
FF(L) be? In 1973 Jeffrey D. Ullman of
Princeton University discovered that for
any list L, FF(L) < (17/10)OPT(L) + 2.
Ullman also showed that the coefficient
17/10 cannot be improved. If OPT(L) is
a multiple of 10, however, the constant
2 can be dropped from. the inequality:
FF(L) < (17/10)0OPT(L). It is conjec-
tured that this simpler bound applies in
all cases.

This bound shows that first-fit packing
can perform rather poorly: it can re-
quire as much as 70 percent more than
the optimum number of bins. Experi-
menting with the first-fit packing algo-
rithm shows that the results are worse
when large weights appear at the end of
the list, requiring that new bins be start-
ed even though a great deal of space
remains in partly filled bins. It makes
sense to rearrange the list, putting all the
large weights near the beginning so that
the small weights at the end will be
placed in odd gaps in nearly filled bins.

This notion suggests a new packing pro-
cedure called the first-fit decreasing
packing algorithm. The weights of L are
arranged in a decreasing list and then
the first-fit packing algorithm is applied.
The new algorithm turns out to be quite
effective [see top illustration on preceding
pagel. If FFD(L) denotes the number of
bins required for the first-fit decreasing
packing of L, then it can be shown that
FFD(L) < (11/9)OPT(L) + 4 for any
list L. It has been shown that the coeffi-
cient 11/9 cannot be improved.

The expression (11/9)OPT(L) + 4
looks deceptively simple. Substantial
difficulties are encountered in trying to
prove that it is indeed the upper bound
for FFD(L). The only proof known at
present is one devised by David S. John-
son of Bell Laboratories and it is more
than 75 pages long.

When a large number of bins is re-
quired in a packing problem, the con-
stant 4 in the inequality becomes rel-
atively insignificant. In that case the
first-fit decreasing packing algorithm is
guaranteed to pack the weights of any
list into no more than about 22 percent
over the optimum number of bins. This
result is certainly much better than
the 70 percent increase over the opti-
mum number of bins that can occur in
the first-fit packing of a particularly un-
wieldy list.

Within their established bounds the
first-fit and first-fit decreasing packing
algorithms, like other scheduling proce-
dures, are subject to unexpected behav-
ior as the parameters of the model are
varied. For example, removing a weight
from a list for the first-fit decreasing
packing algorithm can increase the
number of bins needed. If the reduced
list is denoted by L', it is still not known
how large the ratio FFD(L')/FFD(L)
can be and whether FFD(L) can increase
when the largest element of L is re-
moved. Once again it is the require-
ment that a weight be placed in the first
available bin that is responsible for the
unpredictable behavior of packing algo-
rithms, but such behavior is not uncom-
mon in the more complex scheduling sit-
uations of the real world.

he simple scheduling model I have

described has provided a great deal
of information about problems of real-
istic complexity. Many extensions of the
basic scheduling model are possible.
The model can be modified to allow in-
terruption of tasks before completion or
to allow unforced idleness. It can in-
clude the resources other than proc-
essors that are required for the execu-
tion of tasks, the probabilistic execu-
tion times of tasks, various measures
of model performance and so on. By
subjecting these extended models to the
type of analysis I have discussed here
investigators today are rapidly gaining
insight into the difficult problems of
scheduling.

