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Computational complexity theory as developed by theoretical computer scien-
tists started to have a major impact on the field of discrete optimization in the
early 1970’s. In two remarkable papers, S.A. Cook and R.M. Karp demonstrated
that a large number of combinatorial problems, notorious for their computational
intractability, were all equivalent up to a polynomial transformation. This implies
that a good (i.e., polynomial-time) algorithm for any of them could be used to
solve all others in polynomial time as well, which would establish the equality of
the problem classes ? and A? [3]. In general, this equality is considered to be
very unlikely, and NP-completeness of a combinatorial problem has become
commonly accepted as being indicative of its inherent difficulty.

Computer scientists again must take a lot of credit for establishing membership
of & for many traditional problems. However, the notion of a good algorithm is
originally due to Edmonds [1], whose work in matroid optimization theory has
been essential in getting this concept accepted and appreciated. We refer to
another session report [2] for more extensive comments on the development of
good algorithms. Within this area, the challenge to have upper and lower bounds
on the time complexity of a problem meet each other remains as large as ever,
even for seemingly simple problems. For example, finding the median of n
numbers is now known to be possible in O(n) time, but a lot of ingenuity seems to
be required to decrease the upper bound or increase the lower bound on the
multiplicative constant. It may even be possible to apply mathematical program-
ming on a metalevel to determine optimal algorithms!

The class of problems that have been proved NP-complete is still expanding
rapidly and extremely refined results are available (see, €. g. [3]). Typically, what is
lacking for those problems is a good characterization for the optimality of feasible
solutions, such as the one that duality theory yields for linear programming. The
duality theorem provides strong evidence against the NP-completeness of linear
programming, since (unlike ) NP is suspected not to be closed under com-
plementation. Linear programming, graph isomorphism and other problems that
still defy classification may well turn out to be neither in ? nor NP-complete,
which has been shown to be possible, provided, of course, that P = NP,

An often-heard and justified complaint against NP-completeness theory is that
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it only yields a very coarse measure of problem complexity. Despite the inade-
quacy of the usual testing procedures for enumerative algorithms, it is obvious to
every practitioner that some NP-complete problems are harder than others.
Refinements of the complexity measure would be very welcome. Within the class
of NP-complete problems, one might obtain such refinement by investigating
various ways of encoding the problem data or by examining the trade-off between
running time and worst-case performance of approximation algorithms. A lot of
work has been done in the latter area. Questions that need much further study is
how to analyze properly the average-case behavior of heuristics (which presup-
poses a probability distribution over the set of problem instances) and how to
relate it to the worst-case behavior.

Computer science has more to offer in terms of theoretical models for the
analysis of problem complexity. /' is included in the class of problems solvable
in polynomial space. This class is the same for deterministic and nondeterministic
Turing machines. Polynomial-space completeness has been established, for exam-
ple, for a modification of the well-known game of hex. Beyond that, some
problems have been shown to require at least exponential space, such as the
“vector reachability” problem: given a finite set of integer vectors, an initial
vector u and a final vector v, is it possible to add vectors from the set to u (with
repetition allowed) so as to reach v, while remaining within the positive orthant?
Another question of obvious interest is to extend all these concepts to parallel
machine models.

Among practitioners one often encounters a lack of enthusiasm for these new
tools, which probably only an equality proof of # and A%? could remove
completely. It is unfortunately true that many of the results obtained in this area
are asymptotic and yield little concrete information for problems of “‘real world”
size; they still have to stand the test of practical applicability. Yet we would argue
that the evident success of complexity theory in determining factors that influence
the inherent difficulty of a problem and in bordering the best algorithmic
performance that we may expect to get, will be of ultimate benefit to theoreticans
and practitioners alike.
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