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INTRODUCTION

For a graph¥ G with edge set E(G), let e(G)

denote the cardinality of E(G). Suppose we are given two

graphs G and G' with e(G) = e(G'). By a U-decomposition

of G and G' we mean a pair of partitions E(G) = E, + ...

1
| 1 ]
and E(G') = El + ... + E, such that as graphs, E; and E,
are isomorphic for all i. Such decompositions always
exist when G and G' have the same number of edges since

1
we can always take each Ei and Ei to be a single edge.

The function U(G,G') is defined to be the minimum value

t P. Erdds, some of this work was done while he was a

consultant in Dept. 1216.

*
In general, we follow the terminology of [3].
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of r for which a U-decomposition of G and G' into r parts
exists. A number of well-studied graph theoretic questions
can be expressed in terms of U-decompositions. For
example, when G' consists of e(G) disjoint edges then

U(G,G') is just the edge-chromatic number of G and s0,

is always equal to 8§ or § + 1 where § is the maximum
degree of G (e.g., see [5], [13]). When G' consists of
e(G) edges incident to a single vertex then U(G,G') is

known as the edge-dominating number of G. Similarly,

mi? U(G,G') is called the thickness, arboricity or
bgparticity of G (see [7], [8]) where G' ranges

over all planar graphs, acyclic graphs or bipartite graphs,
respectively.

In this note we investigate various properties
of U(G,G'). Of particular interest will be the quantity
U(n), defined by

U(n) = max U(G,G')
G,G’
where G and G' each have n vertices (and, of course,
e(G) = e(G')).

Before proceeding to the main results we first
make remarks concerning notation. The set and number of
vertices of a graph G will be denoted by V(G) and v(G),
respectively. As usual, the symbols Sn, K _and K

n m,n

denote the graphs: n-star, complete graph on n vertices



and complete bipartite graph on m and n vertices,
respectively. The distance between x and y in G, denoted
by dG(x,y), is defined to be minimum number of edges in any

path joining x and y (if it exists). If no such path exists,

d,(x,y) is defined to be ». The notation H C G indicates
that H is a (partial) subgraph of G; m disjoint copies

of G are denoted by mG. Sometimes we write G = G(n,e)

to indicate that G has n vertices and e edges. Finally,

x7 denotes the "ceiling" function of x, i.e., the least

integer not less than x, and (x| denotes the greatest

integer not exceeding x.

BOUNDS ON U(n)

The first lower bound on U(n) which is likely

to occur to anyone thinking about the problem is

(1) U(n) > th

This can be seen in a variety of ways, perhaps the

simplest furnished by considering the graphs [%J Sl and

2

shown in Fig. 1. 1In this case, all the Ei must be taken

Sth (with the appropriate number of isolated vertices

to be single edges.
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Figure 1

In fact, as we shall see later, [%J is the
essentially best possible lower bound for U(G,G') when
both G and G' are forests (i.e., acyclic). However,
substantially worse examples exist when G and G' are
allowed more freedom. (The reader may find it instructive
to look for one before proceeding.)

A better lower bound can be obtained by
considering the graphs G = S and G' = mK, + S.. In

3m 3 0
this case

(2) U(G,G') = 2m,



the minimum U-decomposition being attained by partitioning
the edges of G and G' into m S2's and m Sl's. It follows
from this that

(3) U(n) 12—1§+ 0(1).

As we shall see in Theorem 1, the constant % is
asymptotically best possible.

Concerning upper bounds for U(n), as we have
noted earlier, for G = G(n,e), G' = G'(n,e), it is trivial

that U(n) < e < <2). It is almost as easy to prove the

following linear upper bound on U(n):
(%) U(n) < 2n-1.

To see this, suppose we are given two graphs G = G(n,e)
and G' = G'(n,e). Sequentially decompose them into

stars by repeatedly choosing (arbitrary) nonisolated
vertices veG, v'eG' and removing a 86 centered at each

of v and v' where 8§ is the minimum of the degrees of v
and v'. At each step of this process we create at least
one more isolated vertex in the remaining graphs. Thus,
after at most 2n-1 steps, all the vertices in one of the
graphs (and therefore, also the other graph) will be
isolated and consequently, U(G,G') < 2n-1. Since G and G'

were arbitrary, (4) follows.



In order to improve (4) we will have to work
considerably harder. This will be done in the following

o

theorem, which is the main result of the paper.
Theorem

2
(5) U(n) = 3N+ o(n).

Before proving (5) we first need to establish
several lemmas (which are actually of independent

interest).

Lemma 1. If e(G) > 2ab then G contains either S, or bs,

as a subgraph.

Proof: Suppose Sa £ G. Thus, 6(G), the maximum degree
occurring in G, is at most a-1l. Let ey be an arbitrary

edge of G. Since 6(G) < a-1 then e, is incident to at

1
most 2a-U4 other edges of G. Let €5 be an edge which is
disjoint from ey As before, e, is incident to at nmost

2a-4 other edges and 80, €5 and e, together are incident

to at most 2(2a-4) other edges. Repeating this process, after
el,e2,...,ek disjoint edges are chosen, we can continue
provided e(G) > (2a-3)k. In particular since by hypothesis

e(G) > 2ab then G contains b disjoint edges, i.e.,

bSl C G and the lemma is proved.



Lemma 2. Any two graphs G = G(n,e) and G' = G'(n,e'")
have isomorphic subgraphs with at least E%L edges.

(3)
Proof: We make use of a simple application of the
probability method (see [4]). Label the vertices
(arbitrarily) of G and G', say, V(G) = {xl,...,xn},
v(a') = {x]‘_,...,xr'l}. Let A denote the set of all 1-1
mappings of V(G) onto V(G'). Thus, |A| = n!. For given
edges yeE(G), y'eE(G'), there are exactly 2(n-2)! elements

reh which map y onto y'. Hence, if we define

1 if A maps y onto y',
1,(ysy") =
0 otherwise,

then
z z 1, Gy,y") = z zi)\(y,y')
Aeh y,y! y,y' Ael
= > 2(n-2)t = 2ee’(n-2)!
¥y
Since |A]| = n! then for some A,el

0

N 2ee'(n-2)! _ ee'
2 1>‘O(y,y') 2= m
y,¥' 2



The edges of G mapped onto edzes of G! by AO form the
subgraph of the required size. [

We now begin the proof of (5). Starting with
the given graphs G = G(n,e) and G' = G'(n,e), where n
is a large integer, repeatedly apply Lemma 2, removing
the large common subgraphs which are guaranteed by the
lemma. Thus, if after the kth step we have Gk = Gk(n,ek)
and Gi = G;(n,ek) remaining, then the lemma implies
that we can remove isomorphic subgraphs having at least

ei/(?) edges. Thils leaves graphs G

K+1 and Gk+l each
having
2 ,/n
(6) Cr+1 S ek“ek/<2>
— n\.
edges, (where we let eq = e). Let o, denote ek/(2),

hence, 0 < o) <1 and (6) can be rewritten as

(6") o = f(ay ), k > 0.

2
k+l S 7O, F
Note that y = f(x) is just a parabola with a maximum of
/4 at x = 1/2.

Suppose for some k that ay < 1/k < 1/2. 3ince

f(x) is monotone for 0 < x < 1/2, we have

[}
|
A

a

k1 S Tlop) < £(1/k)

But a, = f(ao) < 1/4 so by induction

10



(N a, < 1/k, k > 1.

k

Translating (7) back to e, we obtain

(") e < (5 )k, x> 1.

We note that this result can already be used
to improve the trivial bound of 2n-1 on U(n). For,

taking k = Ln/v2] in (7') we have e, < n//2 which implies

t

k

k
that the decompositions of the remaining graphs Gy and G

can then be completed (one edge at a time) in at most
n/ve steps. Thus, the U-decomposition requires altogether
n/v2 steps, and we have shown that U(n) < n/2.

Coming back to the proof of (5), we apply (7')
with k = % for a large number C to be specified

]
later. Let H = G, and H' = Gk denote the two graphs

k
remaining at this stage. Thus, e(H) = e(H') < % Cn.

We next sequentially remove all common Sm's
and mSl's from H and H' with m = [log n]. We continue
until the remaining graphs, which we denote by J and J',

respectively, contain no common Sm's and mSl's. Without

loss of generality we may assume

1



Note that in going from H to J we used at most

. Cn
e(H)/m < mg—n

steps since each step removes m
edges. If e(J) < n/log n then we are done since we
can complete the U~decomposition in at most Isg—ﬁ steps,

the whole process requiring at most

Cn " n
2 log n log n

n =
z + o(n)
steps for large C and large n. Hence, we may assume

n
e(J) > log n°

It now follows from Lemma 1 that

2/3

(8) §(J") e(J")/2m > n

{v

for large n since mSl z J'.

Let V' = {Vl’v2""’vr} denote the set of
vertices v of J' which have deg(v) > §(J') - 1. 1In
other words, V' consists of all vertices having maximum

degree or maximum degree minus one in J'. By (8) it

follows that r < Cnl/3. In J, choose a set W = {wl,w2,...

of r vertices with the properties:
(1) for all i # j, dJ(wi,wj) > 3;
(ii) 4if x £ W and dJ(x,wj) > 3 for all j then
deg(x) < min{deg(wi)}.
i
To see that such a set W exists, observe that

since 6(J) < m, for each vertex v of J there are at most

12



m2 vertices x with dJ(V,X) < 2. Thus, we can certainly

find a set wo with at least v(J)/m2 > n/2 1og2n >r
vertices. If WO doesn't satisfy (ii), successively
replace vertices in it by outside vertices of larger
degree until it does.

There are now two possibilities:

(a) min{deg(wi)} > 2. 1In this case the common subgraph

X we remove from J and J' is

+ S

= Sdeg(wl) * Sdeg(w2) deg(wr)’

forming J and J', respectively. This is certainly
possible in J since we simply form the r stars of
X at the corresponding r vertices in W. On the other
hand it is not difficult to see that X also occurs

in J', with the S ) centered at the Vs 1l iz<r,

deg(wi
since deg(vi) > 8(J') -1 > n2/3, r < Cn1/3 and
deg(w;) < m = llog n] for large n. Let I(Y) denote

the number of isolated vertices of a graph Y. Then
I(J) > I(J) + 1 and 8(J') < &(J') - 2

and so,
n=-I(J) + 6(J') > n-I(J) + &§(J') + 3.

(p) min{deg(w,)} = 1. Since 8§(J) < m there are at most
i
m < /n edges within distance 2 from some vertex

n — n
of W. Hence, at least Tog & ~ r/n > > Tox n edges

13



{x,y} of J have both endpoints x and y a distance
of at least 3 from every wiew. By the definition
of W, this implies that the edge {x,y} is
isolated. 1In this case the common subgraph X we
remove from J and J is X = rS;. In J, we form X
from r isolated edges, thereby isolating at least
two new vertices in forming J. 1In J', we form

J' = J' = X by removing disjoint edges incident

to each of the vieV. Therefore,

n-I(J) + 8(J') > n-I(J) + 2 + 6(J') + 1

= n-I(J) + §(J') + 3.

Thus, in either case n-I(J) + &§(J') increases
by at least 3. Since at the beginning of this reduction,
I(J3) > 0, 8(J') < n then n-I(J) + §(J') < 2n. Thus, we

can apply this reduction until the remaining graphs

= A' I = A' n i
J and J' have e(J) e(d') < Tog 0" This part of the
reduction requires at most 2% steps.

The final decomposition of J ana J' uses at

n
most e(J) < Tog n

steps. Thus, the complete U-decomposition

of G and G' requires at most

n Cn 2n n 2
ctz Toznt 37% Tog n < (3 * €>n

steps for any fixed € > 0 provided C and n are sufficiently

large. 'Thus,

14



(9) U(n) i%n+o(n).

Equatiorn (5) now follows from (3) and (9) and the Theorem

is proved. §

VARIATIONS AND EXTENSIONS

If G and G' are both restricted to be bipartite
graphs then a somewhat stronger bound on U(G,G') holds.

In particular, if UB(n) denotes

max{U(G,G"):G,G' bipartite, v(G) = v(G') = n, e(G) = e(G")}

then it can be shown using arguments quite similar to

those used for (5) that
(10) U_(n) = r2_1 + o(n).

(The example given in Fig. 1 shows that % is a lower
bound for UB(n)).
A natural extension of our problem which suggests

itself is the generalization to more than two graphs.

Specifically, for a given integer k, define

Uk(n) = max{U(Gl,...,Gk):v(Gl) = ... = v(G

e(Gl) = ... = e(G

where ﬁ(Gl,...,Gk) denotes the least integer r such that

(S A Y = b ...+ E. .
there exist partitions E(Gl) Ei,l El,r having

15



for each j all Ei j isomorphic, 1 < i < r. Quite
>

surprisingly, it turns out that
U, (n) = 3 n + o(n)
k I :

for any fixed k > 3. The proof, however,is significantly
more complicated than our proof of (5) and will be
dealt with in a later paper.

From an algorithmic point of view, 1t 1is of
interest to know how hard it is to determine U(G,G') in
general. The question "Is U(G,G') = 1?", also known as

the graph isomorphism problem, has been extensively

investigated recently [12]. It is not known to be
NP-complete and in fact, opinions on whether or not it
is are mixed (see [1] or [6] for relevant definitions).
As mentioned previously, the value U(G,e(G)Sl) is just
the edge-chromatic number xe(G) of G. However, the
determination of xe(G) is also not known to be
NP-complete. On the other hahd, the determination of
U(G’Se(G)) is known to be NP-complete (see [10]). 1In fact,
one of the authors (F.Y. [14]) has very recently shown
that the question "Is U(G,G') = 2?" is NP-complete. It
would be interesting to know if that still held when G

and G' were restricted to be trees (for example).

16



Of course, most of the preceding questions can
be raised for directed graphs, hypergraphs or more generally,
for other combinatorial, algebraic or geometrical structures.
A particular example of this which has received a fair
amount of attention during the last 75 years is the concept

of equidecomposability of plénar polygonal figures. It

was shown by Bolyai and Gerwien and also by Hilbert (see [11])
that any two polygonal regions P, P' in the plane having

the same area could be decomposed into finitely many
(connected) regions, say P = P1 + ... * Pr’ P = Pi + ... F Pr’
such that Pi and P; are congruent for all i (where we ignore
what happens to boundary points of the Pi)' The determination
of the minimum number H(P,P') of regions for which this is
possible is an extremely difficult and largely untouched

area. For example, if P(k) denotes the regular k-gon

with area 1, it is known that H(P(5),P(4)) < 6. There

seem to be no methods currently availlable for proving

that H(P(5),P(4)) = 6, if indeed it does. In fact, there

are no reasonable bounds on H(P(m),P(n)) generally.

As is well known, the analogous theorem does not hold

for equal volume polyhedra in 3-space (to show this was
exactly Hilbert's 3rd problem [9]). For an interesting
account of this subject the reader is referred to the

recent book [2].
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