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On a Diophantine Equation Arising in Graph Theory

R. L. GRAHAM

INTRODUCTION

In a recent paper of Schwenk and Watanabe [6], trees* whose adjacency matrices have
only integer eigenvalues are investigated. In particular, they show that the “‘double star”
Sm.n consisting of a vertex of degree m + 1, a vertex of degree n + 1, and all other vertices
having degree 1, has all eigenvalues integral if and only if the polynomial x>—
(m +n +1)x + mn has roots which are perfect squares (of integers), say, a’ and b°. This
means that the system

m+n+l=a’+b?

mn =a’b’ M)
should have integral solutions. Solving for m and n, we obtain
m=3a’+b>—1xV(a>+b°~1)>—4a’b),
=3a’+b>—1xV((@a+b)Y - 1D((a-b)>-1)),
n=3a>+b>-1FV((a+b)*—1)((a—b) - 1))
Setting
A=b—a,
B=b+a
we see that (1) is solvable if and only if
(A’-1)B*-1)=C? 2)

is solvable.

In this paper we determine all integer solutions to (2). It turns out somewhat unexpec-
tedly that all solutions are just given by the values of Chebyshev polynomials evaluated at
integers.

CHEBYSHEV POLYNOMIALS

The Chebyshev polynomials (of the first kind) T,(x) form a well-studied (e.g. see [4])
family of orthogonal polynomials which perhaps are most conveniently defined by:

T, (cos 8) =cos né (3)

for n=0,1,2,.... The first few polynomials are:

To(x)=1,

Ti(x)=x,

To(x)=2x"—1,

Ts(x) = 4x>—3x,

Ta(x)=8x"—8x*+1,

Ts(x)=16x"—20x>+5x.

* For undefined graph theory terminology, see [1].
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In general, the T, (x) satisfy the linear recurrence
Thia(x)=2xT11(x) - T, (x), (4)

and, in particular, have integer coefficients. Associated with the T,(x) are the so-called
Chebyshev polynomials of the second kind, denoted by U, (x). They are given by

sin(n+1)6

n 8)= :
U, (cos 8) Sin 0

and satisfy the same linear recurrence (4) as do the T, (x), but with the starting values
Us(x)=1, Ui(x)=12x.

Among the many identities (cf. [4]) relating the T.,,’s and U,’s are the following (which we
will need later):

Th(x)=1= (x>~ 1) Uh-1 (x), (5)
Tm+n(x)_Tm—n(x)=2(x2_1)Um—1(x)Un~l(x)9 m=n. (6)

It is already clear from (5) that if we choose A = T,,,(x), B = T,(x), then (2) will hold
with C = (x*~ 1) Upm-1(x)U,—1(x). What we next show is that this is the only way (2) can
hold.

DETERMINING THE SOLUTIONS OF (2)

Suppose (A, B, C) is a solution of (2), i.e.
(A’-1)(B*-1)=C>

We assume for now (without loss of generality) that A < B. Of course, we always assume
A, B and C are non-negative. Define B’ by

B'=AB-C. (7)
Note that B'>0 for A>0. Thus
(A’-1)(B*-1)=C?=(AB-B')’
=A’B*-2ABB'+B"”,
B’>-2ABB'+B”+A*-1=0,
(B—AB')’=(A*-1)(B”*-1).
Setting
C'=B—-AB/, (8)
we can rewrite this as
(A’-1)(B?-1)=C". 9)
Furthermore, if we assume A >1 then
B'<B. (10)
For suppose not, i.e. suppose

B'=AB-C=B.
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Then
A-1)B=C,
(A-—1)BC=C*=(A*-1)(B*-1),
BC=(A+1)(B*-1),
since A >1. Consequently
(A-1)B*=BC=(A+1)(B*-1),
A+1=2B*>2A% since A<B,

which is a contradiction since A > 1. A similar argument shows that C’'> 0 in this case.
Therefore, any solution (A, B, C) to (2) with 1< A < B generates another solution
(A, B, C") to (2) with

0<B'<B, C'>0.

By the symmetry of A and B in (2), if (A, B, C) is a solution then so is (B, A, C)=
p(A, B, C). Hence, we can keep applying the transformation
a:(A,B,C)~>(A,B', C) (11)

(interchanging A and B when necessary to keep A < B) until we eventually reach a
solution of the form (1, x, 0). We call such a solution primitive. It is important to note that
the transformation (11) is invertible, the inverse to

B'=AB-_C,
U:C'=B—AB’=AC—(A2—1)B,
being given by
B=AB'+(C’,
Tc=ac+ (A’-1)B".
Therefore, we have shown that every solution to (2) can be generated by starting with a
primitive solution (1, x, 0) and applying a sequence of transformations v and p to it.

T

Note that (1, x, 0) > (1, x, 0). Thus, the solutions begin as:

@x, 0)>p

(12)

T pl
(x,1,0)

T

(x, x, x* —@p

T

(x,2x*=1,2x(x>=1))

[

(x,4x>—3x, ()'cz—- Ddx>-1)) (2x*- 1, x, 2x(x2-1))

(where x is an arbitrary positive integer).
Suppose now that we have a solution to (2) with A = T,,(x), B = T, (x). Thus, by (5),

(A= 1)(B*-1) = (T%(x)-1)(T2(x)-1)
= (x> =D Up 1(x)U,_1(x))*
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and so, by (6),
C=x"-1DUpn 1(x)U,_1(x)
= 2T (X) = Tim—ni(x)).
Applying 7 to (A, B, C), we obtain
(T (%), T (%), 2(Tons (%) = Tim—n|(x)))
I
(Ton(x), Topsn (%), 2 Tamen (x) = Tu(x)))
since
AB+C = T() Ta (%) +3(Tn 0 (X) = Timoni(x))
= 3(Tonen (%) + Tim=nl(X)) + 2 Topn () = Tjmon((x))
= Tonin(x).
Since all primitive solutions (1, x, 0) can be written as (To(x), Ty(x), 0) then the
following result holds by induction.
THEOREM. The integral solutions to
(A’-1)(B*-1)=C"
with A, B >0 are exactly given by
A=T.(x), B =T,(x)
for some choice of integers x >0, m, n =0. For these A and B,

C = %(Tm-&-n('x) - nm—nl(x))'

EXTENSIONS
Equation (2) can be rewritten as
C’+A’+B*-A’B’=1. 2"
It is natural to consider the more general equation
C’+A’+B*-A’B*=A. (13)
It is not hard to show that the following modular restrictions hold:
A#8k+3,6,7
A#4(8k +3)
A#4'(8k+7), t=2
A#9k+3,6.

(14)

Furthermore, these are the only modular restrictions which hold. Asymptotically this
leaves 49/108 =0-454 . .. of the integers which are not sieved out by these expressions.
However, not all of these can occur as a A. The least positive such integer is 88, i.e. 88 is not
ruled out by any of the forms in (14) and yet C*+ A*+ B>~ A*B” =88 has no integer
solutions. In fact, only 0-388... of the integers up to 10000 are represented by
C*+A*+B*— A’B?. This ratio is surprisingly constant over relatively small intervals in
this range. It is not known whether the set of possible 4 in (13) has a density or, if so,
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whether it is positive. The same techniques used in proving the Theorem can be used to
show that whenever (13) has one solution, it has infinitely many, and further, all these
solutions can be generated from a finite set of starting solutions, using the transformations
7 and p.

A simple transformation reduces (2) to the equivalent equation
x+yi+z2-2xyz = 1.
This is similar to the classic equation
x2+y2+22—3xyz=0 (15)

studied by Markoff [5], Frobenius [3], Cassels [2] and others in connection with certain
fundamental questions in diophantine approximation. Regarding (15), it is still unresolved
whether for two solutions (x,y, z) and (x',y’, z'), x =x' implies {y, z}={y’, z'}. It is
conjectured (see [2]) that it does. A similar conjecture for (2) is discussed in the next
section.

CoNCLUDING REMARKS

It follows from the Theorem that the possible values of a and b in the original system (1)
are given by

fl

(T (x)— T (x)),

1
2\4in

(16)
HTu(x)+ Tn(x))

a
b
with m < n, where we have (arbitrarily) assumed that a < b. In order for a and b to be

integers, we must choose x odd or m =r (mod 2).

As noted in [6], the system (1) is equivalent to the system
2
pg=a,

X (17)

(p+D(g+1)=5b".

It follows from above that the solutions to (17) (assuming w.l.0.g. that p < g) are given by

pP= %(Tn-m(x) - 1)9
q= %(Tn+m(x) - 1)

where, as before, (x —1)(m —n) must be even. The first few non-trivial solutions are:

3.48=122 1.49=7 2.242=22> 8.288=48
4.49=14% 2.50=10%, 3.243=27>, 9.289=51%

It follows from (16) that the number of b <N which satisfy (1) non-trivially (i.e. with
a < b) is asymptotic to VN, thus verifying a conjecture in [6]. (The main contribution
comes from taking m = 1, n =2, and x odd).

No example is currently known of two non-trivial solutions (a, b) and (a, b") with b # b’.
It is possible to generate the same solution (a, #) in many different ways. This can be done
using the fact that the 7,,(x) obey the following composition rule:

Tos(x) = T.(Ts(x)).

Thus, the choices
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and
m=r, n=s, x=T{y)

give the same values of a and b. Perhaps this is the only way this can happen.

Finally, returning to the original graph theoretic question which motivated (1), it is still
not known if there are trees having arbitrarily large diameter which have all integral
eigenvalues. The double stars Sm.» have diameter 3; no example with diameter exceeding
10 is currently known.
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