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Introduction. A set A of nonnegative integers is said to be an (asymp-
totic) basis of order r if every sufficiently large integer can be expressed
a8 a sum of at most r integers taken from A (where repetition is allowed)
and r is the least integer with this property. In this case we write ord (4) = 7.
A basis A i8 said to have exact order s if every sufficiently large integer
is the sum of exactly s elements taken from 4 (again, allowing repetition)
where s is the least integer with this property. We indicate this by writing-
ord*(4) = s.

It is easy to find examples of bases A which do not have an exact
order, e.g., the set of positive odd integers. Of course, if 0 € 4 and ord(4)
= r then ord*(4) = r as well. However, it is not difficult to construct
examples of bases A for which

ord*(4) > ord(4).

Tor example, the set B defined by

o0
.B = U Ik
k=0
where
I, = {w: 2% 41 < » < 2%+
has
ord(B) =2 and ord*(B) = 3.

In this note we characterize those bases 4 which have an exact order.
It turns out that the only bases which do not have an exact order are
those whose elements fail to satisfy a simple modular condition. We also
estimate to within a constant factor the largest value ord*(4) can attain
given that ord (4) = r. (The reader may consult [1] for a survey of results
on bases.)
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Bases with an exact order

THEOREM 1. 4 basis A = {a,, a,, ...} has an exact order if and only
if
(*) ged{a; ,—a: kb =1,2,..} =1.

Proof. (Necessity). Suppose for some s that ord*(4) = s and assume
(*) does not hold, i.e.,

ged.{a, ,—ap: b =1,2,..} =d>1.
Thus, for all %,
O,y = a(modd).

Therefore, the sum of any s integers taken from A is always congruent
to sa; modulo d which contradicts the assumption that ord*(4) =s.

(Sufficiency). Denote ord(A) by r and assume (*) holds. Let mA
denote the set

{@s+®2+ ... +@,: @, € A},

Facor. For some =,
nAn(n+1)A # 9.

Proof of Fact. It follows from (%) that for some ¢,
g‘.c.d. {ak+1—ak: 1 < k< t} =1.

Thus, for suitable integers ¢, we have

¢
(1) Dl —ay) = 1.
k=1
Define p, and ¢, by
ap,.; i ¢, >0, a if e,>0,
Py = . Q@ = .
ay, it e <O, a4 i e <0,

Then (1) can be rewritten as

t
2 loxl (Pr— ) = 1,

=1
ie.,
t ¢
(2) 2 |oklpx = 1+ Z |0 @ -
=1 k=1

Now consider the integer

t
M = Z LRy %/
=
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Since
i leglog ¢
(3) M= 3 ae(Ylon)4
k=1 g=1 k=1
and also
¢ leglay

(4) Z Z pie| 2 loxlae) 4,

the Fact follows from (2) by taking

t
n = 2 AL
k=1

It follows immediately from (2), (3) and (4) that
2M = M4-Me2nAdn(2n+1)ANn(2n+2)4

and, more generally, that for any w > 1,

w
{5) wM e () (wn+k)A
k=0
r
However, by hypothesis, every sufficiently large integer » belongs to | J i4.
Thus, from (5) with w = r—1, we have =1
(6) o+ (r—1)M e ((r—1)n-+r) A

for all sufficiently large x. This shows that 4 has an exact order and
in fact, that

ord*(4) << (r—1)n+r.
This proves Theorem 1. m

Comparing ord(4) and ord*(4). Define the function g: VAN A4
as follows:
g(r) =max{ord*(4): ord(4) =r and A satisfies (*)}.

A crude analysis of the proof of Theorem 1 shows that g(r) exists and,
for example, g(r) < ¢er* for a suitable constant ¢. The following result
sharpens this estimate considerably.

THEOREM 2. For all r,
(M) il+Ho)rr<g(r) <i1+o(1)r

Proof. We first prove the upper bound. Assume ord(4) = r. Thus,
all sufficiently large x satisfy

(8) vel) kA,

k=1
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From (8) it follows that for any ¢,

(9) lx € C) thA

k=1
for « sufficiently large.
It also follows from (8) that for some m and some ¢, 1 < ¢ < 7,

(10) mecAn(r+1)4.
Thus, letting
d=¢+1l—c¢
we have
2m € 204N (2¢+d)An(2¢+2d)A

and, more generally,
2

(11) um e () (uc+1id) A,
=0

a special case being

ud
(12) udm € [ (udec+1d)A.
=0
Setting t = 4 in (9), we obtain
(13) dw e | ) dkA
k=1

for all sufficiently large . Therefore,

(14) dw +udm € (dr + ude) A
for all sufficiently large x provided

(15) ud = r—1

since for each dv e dk4d, 1 <k <, we also have udm e (ud0+ (r—k)d)A.
In other words, if (15) holds then all sufficiently large multiples of d
belong to (r+uc)dA.

Our next tagk is to find a number w = o(r?) so that wA contains
a complete residue system mod d. Let 4 = {,,...,1} denote the set
of distinct residues modulo d which occur in A. Since A4 satisfies (*) by
hypothesis, we can assume that a; and [; are labelled so that a¢; = I; (mod d)
and, for some f,

(16) G1>G2>--->Gt:1
where

G =goed LT, la—Tgy .oy by =1}
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Since @,,, divides G for all 4, it follows at once that

log 1 It
0gs _ 0gd< ogr

< .
17 Slog2 log2  log2

Thus, for any 2z (mod d) there exist integers ¢, = c(2) With 0 e < d
so that

[ [
(18) Mol —l) = ) ot~ ) =2 (mod d).
k=1 k=1

It follows from (18) that all residue classes modulo d are in ({+1)dA.
Finally, using this together with (14), we see that (provided (15)
holds) all sufficiently large integers belong to d(r+uc+1t+1)A. To satisfy
r—1
(15) it is enough to take u =[ 7 ]
An easy calculation (using (17)) shows that the maximum value the

—1
coefficient d (r—l— c I‘r F) ] +t+1) achieves is (1 + o(l))rz. Thus,

glr) <3(1+0())r?

which is the upper bound of (7).
To obtain the lower bound of (7), consider the following set A, (m)
defined by

A,(m) = {w> 0: ® =1 (mod n) for some 4, rm < i< (r+2)m}

where n = rm(r/2+42) and we assume r is even. Reduced modulo =,
A,(m) is simply the interval of residues {rm,rm+1, very T +2m},
On one hand, since

2

rim
(rm +42m) =

r +r —(r—}—l rm
2 "™ =12

and

r(rm-+2m) = n+ ir(rm)
then all residues modulo = belong to
WA, (m)u(r24+1) 4, (m)U ... vrd(m)
and consequently

(19) ord (4,(m)) <.
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On the other hand, for any ky kA, (m) reduced modulo % forms an interval
of length 2mk+1. Therefore,

%n—1 r2 1
(20) OI'd.* (A,.(m)) = = 'Z:- +r— E—’I;

Taking m large, it follows from (19) and (20) that
9(r) = {1 +o0(1))r
which is the lower bound of (7 ). This completes the proof of Theorem 2. m

Concluding remarks. We mention here several questions related to
the preceding results which we were unable to settle.
g(r)

r2

1. Show that lim

r—>00
To obtain the exact value of g(r) seems very difficult. It can be shown
that g(2) = 4. However, at present we do not even know the value of
g(3). (It is at least 7.)

2. For a set 4, let A4,,(x) denote ImAN{l,...,a}]. If 4 is a basis

and A4,(z) = o(z) is it true that lim Az(z) -
T—00 1

3. By the restricted order of A4, denoted by ordzy(A4), we mean the
least integer ¢ (if it exists) such that every sufficiently large integer is the
sum of at most ¢ distinct summands taken from A. As pointed out by
Bateman, for % > 3 the set 4, — {£ > 0: 2 =1 (mod &)} has ord(4) = h
but has no restricted order. However, Kelly [2] has shown that ord 4) =2
implies ordp(A4) <4 and conjectures that, in fact, ordp(4) < 3 is true.

(i) What are necessary and sufficient conditions on a basis 4 to
have a restricted order?

(ii) Is there a function f(r) such that if ord(4) = and ordp(4)
exists then ordg(d4) < f(r)?

(i) What are necessary and sufficient conditions that ord(4)
= ordp(4)? Even for sequences of polynomial values, the situation is
not clear. For example, for the set 8, = {n% n>1}, ord(8,) =4 (by
Lagrange’s theorem): and ordg(8;) = 5 (by Pall [3]), whereas for the set
8 = {(m*+n)/2: n>1},

ord(8;) = ordg(S,) = 3.

exists, and, if possible, determine its value.

(iv) Is it true that if for some r, ord (A — F) = ¢ for all finite sets F,
then ordgi(4) exists? What if we just assume ord (4 — F) exists for all
finite F?

4. Let n XA denote the set {as, + ... +a;,: @ are distinet elements of
A}. Is it true that if ord(4) = r then r x A has positive (lower) density?
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If sA has positive upper density then s x A must also have positive upper
dengity ?

b. Given k and m, when does there exist a set A = Z,, so that 4, 24, ...
...y kA form a disjoint cover of Z,,? For example, for k = 2, m = 3t—1,.
the set 4 = {t,¢+1,...,2{—1} works.

Of course, many of the preceding questions could be formulated for
ord7(4) (defined in the obvious way). However, we leave these for a later
paper (IWL).
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