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INTRODUCTION

It is well known that perfect play in the familiar game of
Tlc-Tac-Toe* always results in a draw. It is less well known (but
equally true) that no draw is possible for the 3-dimensional analogue
of Tic-Tac-Toe. More precisely, i1f the set of integer points
Ig = {(xl,xz,x3):xie{0,1,2},15153} is arbitrarily partitioned into two

classes, say I% = C1 U C2, then at least one of the classes must contain

three collinear points. However, it is easy to construct partitions
of Ig = {(xl,x2,x3):xie{0,l,2,3} into two classes, neither of which
contains four collinear points.¥*#¥

In this paper we would like to describe recent work directed
towards sharpening the known bounds for the n-dimensional generaliza-
tions of this problem. In particular, we show that in n dimensions,
there exists a board of size 0(n) for which no draw is possible.

Because of space requlirements, and keeping more in line with
the talk on which this paper is based, we will furnish detalled
proofs for very few of the assertions made. Rather we will indicate
the underlying ideas needed and the general techniques used. Full
details for these assertions (as well as their generalizations to the
rather more difficult case of partitions into g classes for an
arbitrary prime power q) can be found in [11].

Also known as Noughts and Crosses 1n some parts of the world.

e The 4 x 4 x 4 analogue of Tic-Tac-Toe, marketed under the name of

Qubic, has recently been shown by 0. Patashnik to be a win for the
first player. For an interesting account of this difficult
computation, the reader should consult [16].
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PRELIMINARIES

We first formulate the problem we study more precisely. For
an arbitrary (fixed) integer n > 2, let Z" denote the set of integer
points in Euclidean n-space. A geometric line L of length % in z" is

defined to be a set of points described by

L = {(xl,...,xn):xi=c +d.u,u=1,2,...,8}

171
where
(1) g.c.d.{dl,dz,...,dn} =1,
The special lines in Tic-Tac-Toe have all di = 0 or #1. Condition (1)

Jjust guarantees that any lattice point in the convex hull of L is also
in L.

By a 2-coloring X of Z", we just mean a map x:Z" - {0,1}. A
subset X ¢ Z" is said to monochromatic* under y if for some i e {0,1},

X < x"tial.

For a 2-coloring x of Zn, let 2(x) denote the length of the longest
monochromatic line in Z". Finally, define

(2) p(n) = inf &(x)
X
where x ranges over all 2-colorings of z,

It follows from the fundamental result of Hales and Jewett
[12], [10] that

(3) p(n) » » as n » =,

Essentlally, this theorem asserts the following: For any integers r
and t, there 1s an integer N = N(r,t) so that in any r-coloring of

IE = {(xl,...,xN):xi=0,l,...,t-l,liiiN} there 1s always a monochromatic
line of length t with all di =0 or 1.

The best bounds currently known for N(r,t), as well as
related corollaries such as van der Waerden's theorem for arithmetic
progressions, are extremely weak. We will discuss these more fully at
the end of the paper.

*
Also often called homogeneous.
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Our goal will be to bound p(n) from above.

THE LINEAR UPPER BOUND

It turns out the basic functions we will use in our proofs
depend on very old and fundamental quantities in combinatorics, namely,
the binomial coefficients. However, we wlll derive several (what we
believe to be) new results concerning them which are of interest® in
themselves.

Let Z, = {0,1} denocte the field of two elements.

Definition: For a > 0, define 8¢ Z > Z2 by

() gy () = (1) = bl leBtl) (nog 2)

In Table 1 we list some of the initial values of the 8,

X
01234567
Ofj11111111
101010101
2100110011
31000100001
& 4JYyo00001111
51000060101
6100000011
7100000001
g, (x)
Table 1

We next list various facts concerning the By Let us write

a = Z a121, X = Z X 21, etc.,
i>0 i>0

in thelr binary expansions.

Fact 1. ga(x) = 1 if and only if x, > a, for all i.

i 1

In fact, perhaps of more interest than the main results of the paper.
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Proof: Since the exact power of 2 which divides n! is

z [_%] then (%‘l) is odd if and only if

k>1 2

(5) > [z%b] =2 [z_iﬂ* 2, [2_2]
k>1 k>1 k>1

But

la+B] > [o] + [8]

implies that (5) holds if and only if

[a—*i—] = [—E] + [—lf{-] for all k.
2 2 2
Thus, (5) holds iff there is no carrying when adding a and b written
base 2. Therefore, g, (x) = 1 iff x; > a; for all 1. [ |

From Fact 1, a number of very useful results follow.

Fact 2. If 2t < ac< 2t+l then 8, has period 2t+l, i.e.,

g(x+2t+1) = g(x) for all x e %.
Fact 3.
0 for x = 0,1,...,a-1,
g (x) =
1 for x = a.

It follows from Facts 2 and 3 that the g, 0 <acx< 2t+l, are

independent over Z2 and, in fact, form a basis for functions
f: Z » Zp which have period 2t+l.

It 1s clear that ga(x+1) has the same period as ga(x). More
precise information is given in the following.

Fact 4.

ga(x+1) = ga(x) + ZS eigi(x) (mod 2)
i<a
for a suitable choice of ey = ei(a) € ZE'
Similarly, the period of ga(dx) divides the period of ga(x).
It is not too difficult to prove the following crucial result.
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Fact 5.

ga(x) + 25 ei(d)gi(x), d odd
i<a
g,(dx) =
ZS ei(d)gi(x), d even
i<a/?2
for suitable ei(d) e Zz-
Finally, we have the very useful product formula.
Fact 6 (orthogonality). If a + b < 21 then
2Pty 1ifa+b=2"" o,
jg g, (x)g (x) =
x=0 0 otherwise.

The preceding facts can now be used to prove the following result.

Lemma. If € Z 0(mod 2) then

£(x)

ZS eigi(x) (mod 2)
i<a
can have at most a consecutive equal values,

Proof: Assume the contrary and suppose without loss of generality
(by Fact 4) that

t+1_ t+1_

(6) et a1

= f(2 2) = £(2 1) = 0.

By Fact 3,

gb(o) = gb(l) = ,.. = gb(b-l) = 0.

Thus, for 2t+l -a-1=hb,
2t+l—l 2t+l_l a
0= > g0 = > > egg (g (x)
x=0 x=0 1=0



M
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gi(x)gb(x)

by Fact 6, which contradicts the initial hypothesis on €, .

We are now in a position to prove a linear upper bound on
p(n). This result first appeared in [18]. Define a 2-coloring x of
the points x = (xl,...,xn) e Z" by

n

(6) x(X) = :E 814k (X)) (mod 2)
k=1

Then

(n L(x) < 2n-1.

To see this, consider a line
L:xi(u) = cy + dyu, u=0,1,2,...

where g.c.d.{dl,dz,. is odd. Let k be the

largest index with d

..,dn} = 1. Thus, some d
odd. Then

1
k

n

Bpop4p (X (W) = Z €141 (C4Fdgu)
1=1

x(x(u))

1
[
gl

= 814k t Z € 8y (W)
i<n-1-k

for suitable €y € ZZ since by Fact 5, the gn—l+i(ci+diu) with d4; even

collapse into Z2—linear combinations of gj(u)'s with

J 2 % (n-14i) <n <n -1+ k. Thus, by the Lemma, x(X(u)) has at most
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n-1+%<2n -1 consecutive equal values. This proves (7). It
follows from (7) that

(8) p(n) < 2n -1

which 1s the upper bound promised for this section. Note that (7)
actually holds when g.c.d.{dl,...,dn} is odd.

A SUBLINEAR UPPER BOUND

The basic idea we will use in reducing the bound in (8) is %o
replace the terms gj(x) in the definition of ¥ by functions
hj(x,y,...,z) of many variables which behave in certain ways like
gj(x). The key result for such a substitution is the following exten-
sion of Fact 6.

Fact 7 (generalized orthogonality). If 0 < a,b,...,c < 2t+l then

t+1_

2 1 0 if ai+bi+...+ci = 0 for some 1,

ZE g, (x)gy (x)...g.(x) =
x=0 1 if a

+b.+...+c, 1l for all i.
i i

i

As an example of the type of substitution we have in mind,
consider the function h_. defined by

5

he(xy,x5) = go(x)) + go(xy) + g (x;)g)(x,) (mod 2).
Suppose x(u) = (xl(u),...,xN(u)) with

xi(u) = c; + du, g.c.d.{dl,...,dN} =1
and

x(x) = ... + h5(x1,x2) +

Then

x(x(u)) = ... + g5(c1+dlu) + g5(c2+d2u)

+ gl(cl+dlu)g4(c2+d2u) +

Therefore,
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t+1

2 -1
D x(Ew)eyw)
u=0
St+l_y
= ... + 25 h5(cl+d1u,c2+d2u)g2(u) + ...
u=0
St+l_g St+l_g
= ... 4 25 gg(cytdjulg, (u) + :S g5(cytd,u) g, (u)
u=0 u=0
St+l_,
+ :E gl(cl+dlu)g4(c2+d2u)g2(u) P
u=0

By Fact 7, the sum of the three displayed terms is 1 modulo 2 unless
d1 = d2 S 0(mod 2). Thus, if the line X(u) moves non-trivially in
elther the x1 or the Xy direction then gs(u) occurs in the expansion
of x(X(u)) with a coefficient of 1. It is in this sense that the use
of h5 in the definition of the coloring x is equivalent to the use of
gs- However, h "usgs up" two coordinates where as gs only uses up
one. For k = zf ki2l, let w(k) (called the weight of k) be defined
i>0

by w(k) = :z'ki. De fine hk:zW(k)

1>0

> Z2 by

hk(zl""’zw(k)) = ZE Gy
I
where I ranges over all nonempty subsets of {1,...,w(k)} and

GI = ’ ‘ga (Zi) with :E ai = k having no carries when performed to
fer 1 1e1
the base 2. It is not hard to show in this case (using most of the
preceding Facts) that if
= t t+1
zi(u) =cy + diu and 27 < k < 2
then

2t+1

-1
> (2 (W52, (0 (W8 gy (W) = 0(mod 2)

u=0
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1f and only if all the di are even.
The coloring x¥ we use for the sublinear bound can now be
n
described. Let W(n) denote :S w(j) and set N(n) = W(2n-1) - W(n-1).
Define J=1

x*:ZN(n) - Z2 by
2n-1
X¥(2150 e a2y ny) = z h (2ot W(n-1)+1% " " 220 (k) -W(n-1)
k=n

It follows from the preceding Facts and the definition of hk (in much

.,d } =1
_ N(n)
then in the expansion of x¥(z(u)) as a %2—1inear combination of gk's,

the same way as in the proof of (7)) that if g.c.d.{dl,.

some gi with 1 < 2n - 1 occurs non-trivially. The Lemma then implies

that x*(zZ(u)) has at most 2n - 1 equal values. Thus,

L(x¥%) 2n - 1

A

and consequently,

(9) p(N(n))

[A

2n - 1.

Finally, since it can be shown that (cf. [31])

W(m) = (1+0(1)) 3L

then straightforward computation using (9) implies the main result of

the paper:
Theorem.
(10) o(n) < (1+o(1)) 22 1og 2

log n

CONCLUDING REMARKS

As we remarked earlier, a similar but more complicated
analysis can be carried out (see [11]) with an arbitrary prime power
q replacing 2. These results imply the following upper bound on pr(n),
the quantity which corresponds to p(n) when r colors are used in
coloring z".



44

2 log r n
pL(n) < (1+o(1)) “F—=7 Tog 7

It is interesting to note that the properties of the ga

expressed in Facts 2, 3 and 4 actually characterize (2) (mod 2). 1In

fact, for an arbitrary prime p, suppose fa:Z > Zp, a=20,1,2,..., 1is
a sequence of functions satisfying:
. , t+1 t t+1 . .
(1) fa(x) has period p where p~ < a <p H fo(x) has period 1;
0 for x = 0,1,...,a-1,
(11) f (x) =
1 for x = a,

(i1i) fa(x+l) is a Zp—linear combination of fi(x), 0 <i<a.

Then (see [111])

fa(x) = (:) (mod p).

This is not the case when p is composite.

A fundamental question in this subject which at present
remains completely unanswered is whether or not the density version of
the Hales-~Jewett theorem holds. To explain what we mean by this,
consider the well known theorem of van der Waerden on arithmetic
progressions (see [22], [9], [10]):

For all integers k and r, there is a number

W(k,r) so that in any r-coloring of {1,2,...,W(k,r)}

there is always a monochromatic arithmetic

progression of k terms.

Observe that this result follows from the Hales-Jewett

theorem - simply assoclate the integers in [O,kn-lj with Zﬁ by

n
X = 25 xiki_l+ﬁ-(xl,x2,...,xn). Nearly 50 years ago, Erdds and Turdn

i=1
[4] raised the question of determining which color class contains the
long arithmetic progressions. In particular, they conjectured that
the "most frequently occurring" color should have this property. This
was shown to be the case for 3-term progressions by Roth [19] and

finally, in 1974, Szemerédi managed to prove the general result.

Theorem* (Szemerédi [21]). For all k and € > 0 there is a number

* .
Recently, Furstenburg and others (see [5], [6]) have succeeded in

proving Szemerédi's theorem using newly developed results from
ergodic theory.
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S(k,e) such that if R ¢ {1,2,...,38(k,e)} and |R| > e{S(k,e)} then
R must contain a k-term arithmetic progression.

Van der Waerden's theorem is an example of a Ramsey (or
partition) theorem. Szemerédi's theorem (which clearly implies
van der Waerden's result) is the stronger density version of it.

It 1s very tempting to believe that the corresponding density
version of the Hales-Jewett theorem should hold.

Conjecture*. For all t and € > 0, there exists a number C(t,e) so
that if n > C(t,e) and R C {(xl,...,xn):xe{o,l,...,t—l}} has
IR| > et™ then R contains a line of length t of the form Xy = ¢y + dyu
with all di = 0 or 1.

Even the case t = 2, the only non-trivial case for which the
conjecture is known to be true, requires an argument. In this case,
we are required to find a "line" which consists of two points of the

X = (o850 0e50,00esb,000,0,000,C,50.4),
form:
V= (eees@seneslyinesbyieeslyee,Chann)
However we can assoclate to each point z = (Zl’ZZ""’Zn)’ zy = 0 or 1,

a subset Z = {1,2,...,n} in the usual way; namely, i ¢ Z iff z; = 1.
Under this association, our "line" i1s just a pair of subsets X, Y with
X a proper subset of Y. But a theorem of Sperner [20] shows that

the largest family of subsets of {1,2,...,n} having no member properly

n
2]>m = - o(2n) members. Thus, if

2

IR| > €2 then it must contain a line of the desired form.
Very recently, progress has been made by T. C. Brown and

contained in another has at most<[
ymn

J. P. Buhler (see [2]) for a weakened version of the case t = 3.
Finally, we make a few remarks concerning what we believe

to be the "truth" concerning the actual values of p(n). From above

it seems 1ikely that p(n) = o(log n) or perhaps even p(n) = o(log log n)

should be true. However, the lower bound for p(n), which depends on

the known lower bounds for the Hales-Jewett theorem, is embarrassingly

weak (it is not even primitive recursive). As an example of a measure

of our ignorance in this area, consider the following related Ramsey-

type theorem.

*
One of the authors is currently offering US $1000 for a resolution
of this conjecture. It is actually a strengthened version of an
earlier conjecture of Moser [15].
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Let Qn = {(xl,..

.,xn):xi =

0 or 1}. Then there is

a number NO so that for any 2-coloring of the line segments joining

pairs of points in Qn’ there always exlst four coplanar points of Qn
spanning 6 line segments all having the same color.

and, in ge

where n a's occur on the right-hand side.

something as simple as 344443 into normal notation).

shown that

The best estimate from above currently available for N0 can
be described as follows (also see [1], (7], [14]).

Following Knuth [13], define

atn = an
attn =
neral,
t+1 t £
e e, e gl ——
att...tn =

3

at(at(...(ata))...),

344443

e,

3t4..043

—
at.. .t (atr. ot (Lo (ataata)l ).

(The reader is invited to
Then it has been

64 layers

where each number represents the number of arrows in the expression

below it.

Probably,

The best lower bound known for N

Ny > 6.

N =

0 = 6-

0

is:
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