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ABSTRACT

In this paper we investigate trees (i.e., connected, acyclic
graphs) which contain all trees on n vertices as subgraphs. Let
us denote by u(n) the minimum number of vertices such a "uni-
versal" tree can have. We prove that:

u(@) = n (log n-2 log log nt0(1))/2 log 2),

resolving an earlier conjecture of the authors.

1. Introduction.

A number of papers have appeared recently (e.g., [1], [3],
[41, [5], [6]) which investigate questions of the following type:
For a given class of graphs G, how large must a graph U(G) be
which contains all G € G subgraphs? Here, size can be measured
by number of vertices or number of edges, subgraphs may or may
not be required to be induced, graphs may or may not be directed,
etc. (for undefined graph theory terminology, see [7]).

In this note we study this problem in the case that G is
the class of all (unrooted) trees on n vertices and U(G)
itself is required to be a tree. Let us denote by u(n) the
minimum number of vertices such a "universal" tree can have. Our

main result is the following rather sharp estimate for u(n):
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u(n) = n(log n-2 log log n+0(1))/2 log 2.

(1)
In fact, (1) holds even if U(n) is only required to contain
all binary (i.e., maximum degree three) trees on n vertices.
This completes the work begun by M. Goldberg and E. Lifshitz
[6], who showed that if r(n) is the size of the smallest rooted
tree containing all rooted trees on n vertices as (rooted) sub-

trees then r(n) satisfies:

r(1) =1, r(ntl) = 1+Z ([k:D

In particular, r(n) also satisfies (1).

2. Preliminaries.
By a uniform rooted tree we mean a rooted tree in which the
number of descendants of each vertex depends only on its level

Loreeb )

a tree whose root has bO descendants, each vertex at the jth

level has bj descendants, 0 < j < k, (where we assume bj> 0)

(i.e., distance from the root). We denote by T(bo,b

and the leaves are precisely the vertices at the ktk level. Such
a tree has height k. By convention, a tree with one vertex is a
uniform tree of height 0, denoted by T(0). Also, we let v(T)
denote the number of vertices of T.

The following result is due to Goldberg and Lifshitz [6].

We supply a short proof for ease of reference.

Lemma [6]. For a given rooted tree T, the number of nonisomor-
phic uniform trees contained in T is equal to the number of
vertices of T.

Proof. 1t is enough to prove that for each k, the number
of nonisomorphic uniform trees occurring as subtrees of T with
height k 1is equal to the number of vertices of T at level k.

The proof is by induction on k. For k = 0, the root
corresponds to the unique uniform tree with height 0 to be
found as a subtree of T, namely T(0). Assume k > 0. For each

j >0 let A(j) denote the set of vertices of T at level k-1
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having at least j descendants each. Let T'(j) be the minimum
rooted subtree of T containing A(j) . By induction, there are

|A(j)| nonisomorphic uniform rooted trees of height k -1
occurring as subtrees of T'(j). To each such tree T(bO’bl’
...,bk_l) attach j of the descendants to each vertex at level
k - 1, thus forming a uniform tree T(bO’bl""’bk—l’j) in T.
All uniform trees of height k in T can be obtained this way,
and each of these occurs exactly once. Thus the number of uni-

form trees of height k is just | |A(j)|. But this is the

number of descendants of vertices at level k - 1, i.e., the

number of vertices of T at level k and the lemma is proved. ®

3. The Main Results.

Let us call a rooted tree T a binary tree if vertices of
T have degree at most 3, except for the root which has degree

at most 2.

Lemma 1. The number b(n) of uniform (rooted) binary trees with
at most n vertices satisfies

(log n-2 log log nt0(1))/2 log 2

b(n) = n (4)

Proof. Let B be a uniform binary tree having 2k + 1
vertices. Then B is either formed from two identical uniform
binary trees, each with k vertices and joined to a common root,
or a single uniform binary tree with 2k vertices joined to B's
root. On the other hand, if B has 2k vertices then it can
only be formed from a uniform binary tree with 2k - 1 vertices.

Thus b(n) satisfies

b(1) = 1,
b(2k+1) = b(2k) + b(k), (5)
b(2k) = b(2k-1) k > 1.

However, straightforward calculations now show that b(n) satis-

fies (4). 1In fact, from the work of Mahler, de Bruijn and others
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(see [8], [2], [10]1) much more is known about the behavior of

b(n) and other similarly defined functions.

Theorem 1. Let U = U(n) be an unrooted tree containing as
subtrees all unrooted trees on n vertices. Then the number of
vertices v(U) of U satisfies

v(U) > (log n-2 log log n+0(1))/2 log 2 . ©

Proof. Among the unrooted trees occurring as subtrees of

U are those shown in Figure 1.

A Triple of Uniform Trees (2’81’82’83)

Figure 1.

In (2’81’82’33)’ each Si is a rooted uniform binary tree con-
nected at its root r, to the edge es the other end of which
is z. All the Si are assumed to be different. We order the
edges of 2z so that (z,Sl,SZ,S3) is distinct from

(Z’SZ’SI’SB) as triples of uniform trees, even though they are
identical as unrooted trees; this is a minor point which causes

no difficulty.
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Let us say that three vertices of T are non-

¥1o%p0%3
linear if no X, lies on the path connecting the other two.

For noncollinear vertices X1>Xy,Xq, let z(xl,xz,x3) be the
unique vertex belonging to all three paths joining the three
pairs of X, The number of ordered triples of noncollinear ver-
tices (Xl’XZ’XB) is less than V(U)3. Thus, letting P(z,x)

denote the path connecting 2z and x, we have

vayd s 7 1= ) ) 1
(x15%5,%3) z (e,e,,e,) (%1 5%55%5)
noncollinear edges from z ey P(z,xl)
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where Ti is the subtree of T consisting of all t such that

ey € P(t,z).

Let us consider Ti as a rooted tree whose root is the ver-
tex which together with =z forms the edge e, Let R(Ti) be
the number of nonisomorphic uniform rooted trees S occurring as
rooted subtrees of Ti with v(S) < (n~1)/3. By the Lemma,
R(Ti) E’V(Ti)' Thus, from (7)
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where B(Ti) denotes the number of nonisomorphic uniform rooted

binary subtrees in Ti.
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Now, each triple of nonisomorphic uniform binary trees
(2’51’82’53) with V(Si) < (n-1)/3 1is contained in U and thus,
is counted in this sum at least once. (Also the triple

(z,Sz,Sl,S3) will be counted.) The number of such triples is

B(B8-1) (B~-2)
where B8 = b<E¥§L ). Furthermore, since the Si are nonisomor-
phic, no unrooted tree can arise from more than one triple
(z,Sl,Sz,S3).
Therefore,

v} > 1T serp > (s(5]) - 2 )

Lemma 1 applied to (9) now implies (6) and the Theorem is proved.

Theorem 2. There exist trees U*(n) containing all trees on n
vertices as subtrees with

v(U*(n)) = n(log n-2 log log nt+0(1))/2 log 2 .

Proof. The construction needed for the proof appears in an ear-
lier paper of Goldberg and Lifshitz [6] and two of the authors
[5)]. Basically, what is done is the following. Let G(k) denote
a (rooted) universal tree for rooted trees with at most k ver-—
tices. Then G(n+l) can be constrgcted from G %

. n
by attaching the roots of each Gl{+ |)to a common "super-root'.

This leads to the recurrence

v(G(n+l)) = l+k§l ({[2])) (10)

which can be shown to have a solution of the form

v(G(n)) = n{lo8 n=2 log log nt0(1)) (11)

Since G(n) also contains all unrooted trees on n vertices then

the theorem is proved. -
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Theorems 1 and 2 can be combined to yield the previous esti-
mate claimed for wu(n), namely

u(n) = n(1og n-2 log log nt+0(1))/2 log 2

We note that in the same way we can construct a tree Ud(n)
having maximum degree d > 3 which contains every maximum degree
d tree on n vertices as a subgraph and which also has

n(log n-2 log log nt0(1))/2 log 2 vertices.

4, Concluding Remarks.

Although the recurrence (10) was previously known to hold
for this construction of universal trees, the solution for
v(G(n)) was only given in the crude form

v(G(n)) = n (1+0(1))1log n/log 4

since it was not expected at that time that this would be parti-
cularly close to the truth. When the prior work of Goldberg and
Lifshitz on the rooted case came to the attention of the authors,
it became apparent that it might indeed be closer than we had
suspected. In fact, as it turns out, all of the bounds have the
same form, differing only by powers of n (coming from the O0(1)
error terms).

By rather more complicated arguments it can in fact be shown
that

u(n) = n_3/2+0(l)r(n)

The complete details of the proof of this assertion problem will
appear in a later paper. This shows (as one would expect) that
rooted universal trees really have to be substantially larger
than unrooted ones.

A nice question of this type which very recently has been al-
most completely resolved concerns so-called "caterpillars”, i.e.,

trees in which the vertices of degree exceeding one induce a path.
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If c(n) denotes the minimum number of vertices a caterpillar can
have which contains all n-vertex caterpillars as subgraphs, we now

know

2

c.n Cc,n

< ¢(n) < 2

log n

Earlier work of this type on caterpillars appears in this Pro-

ceedings by Kimble and Schwenk [9].
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