F. R. K. CHUNG AND R. L. GRAHAM

ON STEINER TREES FOR BOUNDED POINT SETS

1. INTRODUCTION

There are many situations in which one would like to connect a set of points
X together with a network having a total length as short as possible. Such
networks, called minimum Steiner trees for X, have a long and venerable
history, dating back to Steinhaus, Maxwell and, in a primitive form, even
to Fermat (see [3]). For precise definitions and a brief summary of recent
work on the subject the reader may consult [4].

In this note we study the following question, first raised by L. Few [2]
in 1955: What is the greatest' length s(n) a minimum Steiner tree for a set of n
points contained in a unit square can have?

By considering subsets of a regular hexagonal lattice placed in a unit
square, it is easy to show that

(1) s(n) = (2)"4n''2 + 0(1).
In [2], Few succeeded in proving
) stn)y<n'/2 + 7.

Since (2)'/* =0.9306 ..., there was still considerable room for improvement
in the coefficient of n'/2. However, no progress was made on this problem
for some 25 years.

The present authors’ attention was drawn to this question by L. Mirsky
[5] who suggested that perhaps it was time to try to correct this unsatis-
factory state of affairs. This note represents a first step in this direction. In
particular we prove

3) s(n) < 0.995n1/2

for n is sufficiently large.

We also consider the corresponding question when the metric in question
is not the Euclidean (or L,) metric but rather the rectilinear (or L) metric
given by

(x5 v ) (x5, ¥,)) =%, =%, | + |y, — ¥, |-

This is often the most appropriate distance measure for designing printed
circuit boards (and traveling in large cities). For this version. we show that
the corresponding maximum length s*(n) satisfies

@) s*(n) <n''? + 1+ o(1).
! Standard compactness arguments show that s(n) is well defined.
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Since examples formed from subsets of a square lattice show that
%) s*(m) = n'? 4+ 0(1)

then the bounds on s*(n) are quite tight. In fact, when n = r2, we are able
to determine s*(n) exactly. In this case

6) s*r)=r+1.
We conjecture that

(7) s*n)<n'?2 +1
for all n.

2. FEw’s PROOF

We begin by reviewing the elegant argument Few uses in [2] to prove (2).
For an integer m (to be specified later), place m + 1 equally-spaced hori-
zontal lines L, on the unit square S (see Figure 1).

The spacing between adjacent lines is 1/m. Also, we denote the vertical
boundary lines V,, and V, as shown in Figure 1. Consider an arbitrary
fixed set of n points p, placed in S. For each point p,, join it with vertical
segments to the nearest two lines L, and L, ,. The total length of all these
vertical line segments, all the L;and V, and V| is just

(m+ 1)+ 2+ n(l/m).

However, note that V), L,,L,,L,,... and the vertical segments from all
the p, going to the L,, form a connected network (or Steiner tree) joining
all the p,. Similarly, so do V,,L,,L;,Ls,... and the vertical segments
from all the p, to the L,, . ,. Since these two Steiner trees are disjoint and
the sum of their lengths is m + n/m + 3 then one of them has length at most

®) Lm+n/m+3).

Vi

Fig. 1.
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By choosing m = [n'/2] we obtain
9) s(n) < n'?2 4+ 0(1).

More careful analysis of the diophantine constraints yields (2).

3. A SHORTER STEINER TREE

In order to improve the coefficient of n'/? in (9), we shall use the following
strategy. S will be subdivided into small rectangles. The two Steiner trees
previously constructed will be modified depending on the local configurations
of the p, within these rectangles. As a result of the modifications, each p, will
be assigned a savings, which will represent a lower bound on the decrease
in length of the modified Steiner tree which connects p, and its neighbors.
The sum of the savings will then be sufficient to improve the upper bound
of s(n).

The details of the construction are as follows. Consider a portion of
S as shown in Figure 2. The height of the rectangle R is 2o = 2/m; the width
of R is f=1/100m. The (closed) shaded portions of R will be termed the
outside parts of R. The unshaded portions of R will be termed the inside
parts of R. Each L,2<i<m— 1, will bisect exactly 1/8=100m such
adjacent rectangles (see Figure 3).

Thus, almost all points of S belong to two rectangles R, although almost
all points of S are in an outside part of a unique rectangle R.

We now assume that an arbitrary fixed set P of n points p,,1 <k <n,
have been placed in S. Let us examine the local situation within one of the
rectangles R. There are several possibilities:

(i) Some outside part of R contains a point g, of P but no part of R contains
more than one point of P (see Figure 4).

The line segments from the g, j # 1, to L, divide the portion of L; in R
into at most four pieces. Remove the largest piece and connect g, to its
two former endpoints by a minimum length network for these three points.

i+ /
A outside parts

L. inside parts

1
“—f*150m "
R
Fig. 2.
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Fig. 3.

It is well known [3] that this will consist of three concurrent line segments
each meeting the other two at 120°.

(ii) Some outside part of R contains more than one point, say ' R
of P (see Figure 5).

In this case, connect the outside points g; to the horizontal line segment
D separating the outside and inside part of R, and join D to L,.

It is now a simple matter to estimate the length saved in each of these
cases. It turns out that in (i) we save at least

« B 7 \2 \/EB o \2\1/2
o s=5i-((Ee) +(34+3))

units of length. We shall assign s, /2 of this amount to the point g ; and the
other s,/2 of this amount to the point g,, the other outside point in R if
it exists.

Similarly, in (ii), it is easy to see that if there are s =2 points qqs-»4,
in the same outside part of R, then the construction indicated saves a total
length of at least

o
(11) sz=§(s—-1)—[3.
9
R 1 %21 R
_____ 93l
94
(a) (b)

Fig. 4.
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This amount of savings will be partitioned into s+ 2 equal parts; each
of the s points g, ..., g, gets assigned one part as does each of the (possibly
two) single points in outside regions of rectangles in which ¢q,,...,q, are
inside points.

Now,since f = /100, the savings per point in case (i) is at least (0.0001294)a;
in case (ii) it is at least (0.1)a which is much larger than (0.0001294)a.

It is important to note here that in the preceding procedure, every point
p, gets assigned a savings of at least (0.0001294)a = (0.0001294)/m since
it is always an outside point of some rectangle or it is very near the boundary
of S and can be treated as an outside point. Thus, the total length of the two
Steiner trees is at most

(12) m+3+ %(1 — .0001294).

It is easy to verify that the expression in (12) can be made less than 1.9999n'/2
for a suitable m with » sufficiently large.

Thus, at least one of two Steiner trees has length less than 0.99995n'/2
for n large, i.e.,

(13) s(n) < 0.99995n1/2.

By a considerably more careful analysis of this general type (in which the
rectangles are now thrown away but the concepts of inside and outside
regions are retained) it is possible to prove

(14) s(n) < 0.995n1/2
for n sufficiently large. However, the details are rather complicated and we
omit them.
4. RECTILINEAR STEINER TREES

Consider now a set of n points p,,...,p, lying in the a x b rectangular
region R(a, b) shown in Figure 6 where without loss of generality, we assume
as<bh.
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We subdivide R(g, b) into ¢ rectangular regions R, by t — 1 equally spaced
horizontal line segments L,. For each P> say p,€R;, let V, denote the vertical
line segment through p, bounded by L,_, and L;. Observe that the union
of all the L,,0<i<¢, all the V., 1<k<n, and the two vertical sides of
R(a, b) form two disjoint rectilinear Steiner trees for the p,- The sum of
their lengths is

b
(15) (t+ 1)a+n;+2b.

Our next step is to modify the two trees we have just constructed. Suppose
there is some L; which is not connected to any V,- We will then delete L,.
The resulting configuration can be seen to be the union of two rectilinear
Steiner trees for the p, having total length at most

(16) (t+1)a+nl—t)+b.

Suppose now that every L, is connected to some V,. Note that if some L,
has no p, on it and is connected to some V, it may be moved vertically, say to
L; (adjusting all the V, accordingly to V,) without increasing the total tree
length until, in its new position, there is now at least one point p; on it. (This
applies to L, and L, as well.) Let us make such transformations recursively
until we reach a configuration of lines L;,0<i<t, with each L; containing
one of the original points p;, and so that the total length of the two Steiner
trees thus formed is still bounded above by (15). By construction, each
p; is connected by its V; to either L, or L, , . Let us extend each Vi,i#0,t,
to form V" so that it contains p; and extends from L;_, to L, ,. The total
increase in length due to the replacement of all the V! by the V! does not
exceed b. Finally, remove the two vertical sides of R(a, b), a total length of
2b. The resulting configuration is again easily seen to be the union of two
rectilinear Steiner trees for the p,, now having a total length not exceeding
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the values in (16). Thus, some rectilinear Steiner tree for the p, has a length
at most of

1 bn
(17) §<a+b+at+7>.

Note that if we choose n=(ax + 1)(bx + 1) for integers a, b, x and place
these n points in R(a, b) in a regular square lattice packing with spacing
1/x then the length of the minimum rectilinear Steiner tree is clearly abx +
a+ b. However, by (17) we have as upper bound in this case

blax + 1)(bx + 1)
t

min§<a+b+at+ >=abx+a+b
t

by choosing ¢ = bx + 1. Thus, (17) gives the exact answer for all n of the
form (ax + 1)(bx + 1).
More generally, by taking

t= <’E>1/2+ o(1)
a

we see that (17) is bounded above by
(abn)'’? + 1(a + b) + o(1).
For a =b =1 this implies
(18) s*n) < n'? + 1+ 0(1)

as claimed earlier.

TABLE 1
n
n 1+%min<t+;) s*(n)
t

2 52 2

3 11/4 2

4 3 3

5 13/4 4

6 72 103

7 11/3 712

8 23/6 11/3

9 4 4
10 17/4 4
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our bound
on s*(n)

actual values
of s*(n)

In general, for a=b =1 and
n=r*+m, —r<ms<r,
by choosing t =r in (17) we obtain

m

(19) s¥rl+m)<r+ 1+ 2

—r<m<r,
which gives a more precise version of (18).

In Table I, we list the known values of s*(n) (taken from [1]) and the
upper bounds we obtain from (17). In Figure 7, we compare our bounds
with the known values of s*(n) and with the values of n'/2 + 1. The bounds
we get from (17) all lie on tangents to the parabola y = x'/2 + 1 with points
of tangency (r2, 7 + 1)

5. CONCLUDING REMARKS
All known evidence points to the validity of the conjecture
s*m)<n'2+1, n=2,

but at present we do not see how to prove this. It also appears that s*(r?) =
s*(r* + 1) =r + 1 for all r. However, it can be shown that s*(r> + 2) > r + 1.
Whether these are the only cases of equality is not known.

It would be nice to improve the bound on s(n) to at least s(n) < 0.99n/2
but it seems that new ideas will be needed.

Finally, we remark that the corresponding questions can be asked for
regions that are not squares, and also other metric spaces as well, but we
do not consider these question here.
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