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ON IRREGULARITIES OF DISTRIBUTION

F.R.K. CHUNG — R.L. GRAHAM

INTRODUCTION

A fundamental problem in the study of the distribution of se-
quences is the quantitative estimation of the extent that an arbitrary
sequence must deviate from some appropriately defined standard of regu-
larity. Among the many results available on this topic, those of K.F. Roth
and W.M. Schmidt are particularly noteworthy. An excellent survey of
much of what is currently known may be found in the book [4] of
Kuipers and Niederreiter.

In 1949, de Bruijn and Erdd&s published a paper [2] which
considered the following measure of irregularity. Let x = (xl,xz, L)
be an arbitrary real sequence with x, € [0, 1]. Define

w(x)=liminf n inf Ixi—x.l.
n— o 1<i<j<n !
Then
(1 W) < = 072135 . . . .

log 4
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Furthermore, the bound in (1) is best possible as shown, for example,

by taking x n = {1_0%5_1)} where {x} denotes the fractional part

of x. (The reader should also consult [6], [7], [8] and [9] for further
references on this result.)

In this paper we consider a much more sensitive measure of clustering.
Observe that a sequence x could gave two consecutive terms very nearly
equal infinitely often and still have w(x) large, provided that the pairs
occur sufficiently far out. In fact, this is exactly what happens for

log(2n —1) }
{ log 2 ’

suggested by a question of D.J. Newman (see [3]):

We remedy this by introducing the measure C(x),

C(x) = inf lim inf n| Xy o — X |-
n nm — oo
The rationale behind this measure of irregularity of distribution is
clear. If x were somehow perfectly spread out, we might hope that

1 .
Ix,, n =X, P for all m and »n (and indeed, there are sequences

x for which this happens forall m and all but finitely many n).
Our first result furnishes a precise bound for C(x).

Theorem 1. For any sequence x in [0, 1],

- -1
@ @< (1+ 2 ) =a=03944197 ..,
k=214
where F_ denotes the n-th Fibonacci number, defined by F, =0,

n
F =1 and F Fn+1+Fn,n>0.

n+2

The bound (2) is best possible, as shown by the next result. For each
integer n> 0, let e(n) denote the unique sequence (e,(n), €,(n), .. )
satisfying (see Lemma 1):

() n= 2 emFy;

i1

(ii) Forall i, €,(n)=0,1 or 2;
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(iii) If e;(n)= e,.(n) = 2, i<j, then for some k with i< k<j,
€,(n)=0

Define the sequence x* = (x§,x},...) by

€;(n)
P

2

Note that x* € [0, 1] and that x* is nowhere dense.
Theorem 2.

3) C(x*) = a.
In fact,

inf inf »n|x*

* —
—xml—a.
nzl m=>20

m+n

The preceding results are intimately related to the following extremal

theorem on the set S, of permutationson {1, 2,...,m}. Define
r—1
u, = min max Z I1r(lk+ 1) TT(lk)|
nes,, I k=

where [ ranges over all increasing subsequences

{i, <iy<...<i}S{l,2,...,m}

Theorem 3.
b
1+ §F_ if  Fy asm<Fy
“4) u, = j | |
— if F <m<F .
k= F F2t+3 2t+4 2t+5

We remark here that permutations for which (4) is achieved can be
generalized by the ordering of the first m terms of x*. These are the
same permutations formed by arranging the first m terms of the well

known sequence {k7}, k=1,2,..., where 7= —é— (1 +V5), in increasing

order.
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The proofs of these three theorems are somewhat involved. In what
follows we first establish various preliminary results which will then be
applied to prove the asserted theorems. We will conclude with remarks
concerning possible extensions to other metric spaces, and in particular,
to the unit square in R2,

PRELIMINARIES
Let F, denote the n-th Fibonacci number defined in the preceding
section. Thus, setting o= 1 _2V§ (so that o+ 7=1 and or=—1),

F, has the explicit representation
1
(5) F, = ' (" — o™).
It follows that
(6) k;ink:anﬂ“l'
Let |lx|l denote the distance from x to the nearest integer. Then

W F;7ll = |FiT—Fi+1|=71_§ [(rF — of)yr — 71+ 1 4 git1| =

@)
1 i-1,__1 | i Iy i i
=ﬁ|0+1+0 1|-V§|o||o+0|-|o|_(—1)o.
Thus,
=L i iy Digi= L1 hip2i
€)) FAIF;ll ;/§(T a')(— Do V§(1 (- Dia%).

In particular,

3-8 B IFy < FIF, <. .. <

1
—=<...
< FSIFgrli < Fy (| Fyrll

It is known from results in diophantine approximation (e.g., see [4] or {5])
that
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(10) min [kl = | F,7ll,

1<k<n
where
F,<n<lF, |,
and, in fact,
) 1 ,
(11) min kllkrll=F,, IF,. .7ll=—= (1 — ¢%t4).
k> Fy, 2i+2 152542 V3

Lemma 1. Every nonnegative integer n can be uniquely represented
as a sum

n= 2 eFy, €=0,1 or 2,
iz
S0 that if €= €= 2 with i<j then for some k, i< k<j, we have
€ =0.
Proof. The lemma holds by inspection for n = 0,1 and 2. Assume

that for some ¢> 2 the lemma holds for all n < th. We will consider

those n intherange F,, <n<F,, ,. Let n' be defined by

, {n—th it F,, <n<2F,,
n =

n—2F, if 2F, <n<F,, ,.

Since 0<n’'<F,, then by the induction hypothesis n' has the valid
representation

n' = ZGF

i1 2P

where, of course, e =0 for i>t. We claim that the unique valid repre-
sentation for »n is given by

F2,+l>21'eF if F, <n<2F,,

Wyt 2 eFy i Wy <n<Fy,.

- 185 -



By construction, the indicated expressions do sum to n. Furthermore,
they are valid since, in the first case, taking €, =1 causes no trouble
and, in the second case, taking €, = 2 also causes no trouble because
in this case

n’=n—2F2t<F

2t+2 _2F2

t=Fy 1>

and consequently, the largest index j<t—1 with e].' # 1 must have
€ = 0 (since by (6)

F

oy + F +...+F, ,+2F, =F

!
2—4 2j+2 3 =yt Fy >0

The uniqueness of the representation for »n follows by similar con-
siderations. §

Lemma 2. Forall 1<s<t,

t
1 1 1 1 1 1
(12) < D a4+ <= — .
F2s+1 i=s+1 in th F2t+2 F2s F2s+2

Proof. We first need several auxiliary results.

. 1 1 1

1) < + ,
F2s—1 F2s F2s+ 1

.. 1 1 1

(ii) > + ,
F2s F2s+ 1 F2s+ 2

3 1 1

(i) =—< + , s>1.
F2s F2s—2 F2s+2

Inequalities (i) and (ii) follow at once from

13)  F,_\Fpyy —F2= (= 1)
which is an immediate consequence of (5). To prove (iii), it suffices to show
( 1 Ty (1 1 S 1
F2s—2 F2s F2s F2s+2 F2s,
ie.,
F2s— 1 F2s+ 1 > 1
F2s— 2F2s F2sF2s+ 2 F2s,
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or

2s—1 F2s+ 1
252 25+ 2

v

1
&

or
F2s— 1F2s+ 2 = 25— 2(F2s+ 1 + F2s+ 2) = F2s— 2F2s+ 3
However, it follows from (5) that

F, _,F Fy ,F, . ,+3

2s+2 25— 202543
so that (iii) holds. By (ii), (12) holds for ¢=s. Suppose now that (12)

holds for a fixed value of ¢t > s. Thus,

t
1 1 1 1 1
2> + - < - )
i=s+1 F2i F2t F2t+2 F2s FZS+2
By (iii),
1 3 1
— + — <0.
F2t Fivn F2t+4

Adding these inequalities, we obtain
1

{ 1
—+
1By F

11 11
2t+ 2 F F2s F2s+2

N

+
i=s+

2t+4
which is just the right-hand side of (12) for ¢+ 1. Thus, the right-hand
side of (12) holds forall s and ¢, s<¢t.

To establish the left-hand side of (12), first note that it holds for
s=1t by (ii).

Suppose now that the left-hand side of (12) holds for a fixed s,
1<s<t Thus

1 1 1 1
< > L1 .
F2s+1 ’=s+1F2i th F2t+2
By (i),
1 1 1
— <
F2s—1 F2s+1 F2s
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so that adding the two inequalities we obtain the left-hand side of (12) for
s—1, ie.,

t
1 1
<z, 11
F2s 1 '=SF FZI F2t+2

This completes the induction step and Lemma 2 is proved. 8
The final result we consider in this section is an inequality relating

the “alternating” arithmetic and harmonic means of an increasing
sequence.

Lemma 3. If 0< Xy <
2n

a% (2 ¢ DR ) (.

Xy <...SXy, | Sx,, then

(= D*
xk) )= 1.

I [\4.5, K

Proof. For n=1, (14) is immediate. Assume (14) holds for all
values of n < N. Considering the function

2N

fixg) = (2 ¢ %) (2 S

as a function of the variable Xg, We find

2N 1
- 2 (-DFx, —5 <0
k=1 Xy

with equality only if Xy;_1 = X,; forall i. In this case the lemma holds
so we can assume strict inequality holds above. Thus, the minimum value
of f occurs when X, Is as large as possible, i.e., xy, = x,. However, in
this case the desired inequality now holds by induction. §

AN UPPER BOUND ON u,

For a permutation we€ S, define
(15)  u(m) = max kZm(ikH)—w(z‘k)rl
I
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where I ranges over all increasing subsequences
{i,<i, <...<i}S{,2,...,m}
Thus,

u, = min u(m).
nES,,
In this section we exhibit a permutation p € S,, which achieves the bound
in (4). Specifically, for a fixed m> 2, define the sequence x(k),
I<k<m, by {{kt}: 1<k<m}={x(1)<x(2)<...<x(m)} where,
1+75
2

asususal, 7= . Further, define p = P, €S, by

x(k) = {p(k)7}, < k< m.

Claim. For t> 0,

t
1 :
+ —_ if F <m<F y
k;, F,, 2t+3 2t+ 4
(16) u(p,,,)< - |
=Z;~—k Froy 1§ Fapa<m<Fys

Proof of Claim. First, suppose ¢t= 0. If F;<m<F, then m=2,
p(D) =2, p(2)=1 and u(p)=1. If F,=3< m< F, —5 then either

m=3, p(1)=3, p(2)=1, p(3) =2 and u(p)=% or m=4, p(1)=3
p(2)=1, p(B)=4, p(4)=2 and again, an easy computation shows
u(p) = 5. This proves that (16) holds for ¢t =0, ie., m<4.

olw

Assume m =5 is fixed. It follows from the definition of the x(k)
that for i>j,

x(@) — x(G) =
={pD1} —{pD7}= H{p@ 71} — oG 7H = Il () — pD) 7.
Hence,if /={i; <i,<...<i}%{l,2,...,m} then

a7

(U8) %)~ x()) = 2 (xCiy , 1) = (i) >
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> 2l el , ) = oGyl = 2 lidyrl,

where d, = Ip(ik+ 1) pG ).

It is important to note at this point that if (16) holds for m =

=F, ., — 1 then in fact (16) holds for all m satisfying F <m< F
Hence, we now assume that for some »n> 5, m= F, .- L Thus by
(18)

2 ld7iI< max {r}—- min {ir}<
(19) k 1<j<F, ., 1<j<F,

<1+ (=D"o" oM =1-(-1)rgr-2,
There are two cases.
Case 1. n isodd.
From what we have shown so far it follows that
{F,7}<{(F, - D7}< {(F, - 1-F)r}<...
S <{F,-1-F, —mFy )Tk L <{F, 7},
ie.,
"< (=)"+1+0<(—0)"+1+0+02<...
<=+ 1+o+ 02+, +oth<. <1 —gr 1,
where we have used (6) and (7) in deriving this.
Thus, choosing
(p(i)), p(iy), pGy), .. ) = F,F,-LLF, —-1-F,,. ..
wF,-1-F,—...—F

n-§?

F,_1)

Define
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2 if j=1,
m={1 if j=F,, 2<2<n-3,

0 otherwise.

Then
m,
1) >l 3
4y 1<j<F,,, ]

Suppose now that for some other choice of I, say

I={ij<iy<..}S{L2,...,F , -1},
we have
C. m.
Q2 2lety, D—-p@)"t= 2 Ls> > =L
k 1<j<F,,, 1 1<j<F,,, ]

Let k& denote the least index for which C Fmy . There are several
possibilities.

(a) Suppose ¢, >m,.

Let i satisfy F, <k<F,, ,. Then

L+ 0" 2> 2clirl> 2 mlijrll+ (¢, — mllkrll>
i j<Fy 7

2 2i+2
2j 2 =g —o"
> 2o¥+o0 +WFy,  7ll= 1

3 + g2 — g2itl =
j<i o

= — g4 g2itl 4 g2 _ g2i+1 _
which is impossible since n isodd and o< 0.
(b) Suppose ¢, <m,.
Thus, k= F,, forsome i with 2i<n - 3.

First we deal with the case k= 1. Suppose c¢; = 1. Then

(23) 27.’=1+ 2%<1+_2'£"—”5J by (9) and (10)



1

<1+ e
1+ 313

(1+0" 2_1—0)=

— ___1__ n—-2
—-1+3”3T“(—o+0 ).

If n=35 then (23) implies

PP (—o+0%) =1+ — 187268 .
=1 7 337 3737 ~
while
m.
s P I T
j>1 7 F,

which is a contradiction.

If n=7 then (23) implies

C, 1
L<ti+5=—(-0+0%)=2.
o, 1 3||3T||( 0+ 0”)=2.20601 ,

while

= 2.3333...

Wl

7 1 1
—+ =14+ =
] F, F,

\%
—

j
which is a contradiction.

If n>9 then (23) implies

c.
g1+ =—1 n-2 S — ..
,-;21 F<l+ggg (ot on < 373 = 241202,
while
m.
] 4,1 .1 _5_
AT >1+F2+F4+F6‘24_2‘45833”'
which is a contradiction.
Similarly, if ¢, =0 then
C, c, ljrll 1
_L< _1* + n—2
P B Y KT Err ARG
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If n=15 then
C.
¢ 1
27 <3 ¢

and

m.
i R S
j F,

\"

j=1

which is a contradiction.

If n>7 then

o

]

i + n—2
=W 3||3||(1 onm )< 3u3||

and

i=1

1+ 03)<

1.74536 . ..

m.
e+ Ly LT
IR AR i S EE

= 2.28470.

which is a contradiction. This completes the analysis for the case

k=1.

Suppose k> 2. Thus, m, =1 and ¢, =0, and

c. c;lljrll
> 1< 2 I by (9) and (10)
ik T 5 Fy Fopp g IF o7l
__ V5 -
= WD%,- C]-“]T" by (8)
V5 _2 Y _
<'l—_‘w (1+0" _i<2k’ C]-”]T")—

V5 _
= gtita (1"'0"
V5
=1 ghira X

X (140"~ 2 — (Tl + N Fyrll + I Fy7ll + .

2. 2 mlljrll) =
<k
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021 1)_ V_(on— 2i-1).

1— 4l+4

5

On the other hand

%o 3 L

] 2i<2k<n-—
j>k i<2k<n 3F2k

If n=2i+ 3 then this sum is just

which is clearly greater than
‘lg(on—Z_oZi—l)_lf5_(02i+1_02i—1)_ V-5'02i

| _ gdita = ] — gditd T ghiter

a contradiction. On the other hand, if n> 2i+ 5 then

_1 A _
F F2i+2 2i+2<2vy<n-3 F2v

1 2 '/gOZV
+ ~ 5 =
2 Faiva 2iv2<m<n-31-o0

1 > 1

1 Vs >

+ +
2i Faipa 1—=02-6 32 29<n-3

1 + 1 '/5 02i+4 _ on—l
————— + =
F,. F2i+2 ] —g2n-6 1 — g2

1 ]/ (Un— 21+3)

2i+2 1 - 2n——6

oV =
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We obtain a contradiction if we can show the right-hand side of (24) is
at least zero. This is so provided

02i(1 _ 04i+4) + 02i+ 2(1 _ 041')

- - +
a- 041)(1 _ 041+4)
+ 0n—2 _ 02i+3 _ 07:——2 _ 021'—1
1 1— 04i+4

In turn, this holds if

021‘ + 02i+2 — gbit4 _ 06i+2

4 +

1-0
+ on-—2 __ght4i+t2 _ g2i+3 4 56i+T7 _ Gn—2 4 g2i-1 >0
ie.,if
o2i 4 gZit2 _ g6it4 _ ,6i+2 _ gnt+4i+2 _ 52i+3 4 o6i+7 4
+ g2i-1 4 gn+8it2 4 56i+3 _ [10i+7 _ ;6i-1 5 0
However, this holds if
021'— 14 02i + g2it2 _ U2i+3 _
— (0811 4 gbi+2 _ g6i+3 4 56i+4 _ 5647y _
_ 010i+7 4+ gnht8i+2 _ on+4i+2 > 0.
But
l+o+03—0*=1+0-02=0,
and
_(010i+7 4+ ght+4it 2(1 _ 04i))> 0.
Thus, the desired inequality holds provided
l1+03—0%+0°>—-08>0.

A straightforward computation now shows this to indeed be the case.
This implies the desired contradiction and Case 1 is finished.
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Case 2. Suppose n is even.
Thus n> 6. It follows as before from what we have shown that
{F, _7}<{F, - Dr}<{(F, - 1 —F)rp< ...
e <{F,_ - 1-Fy— . —F)1}< ...
co<{F,_;-1-F, — .= F,_ )1} <{F,7}.
Thus, choosing

(p(ll)9p(12))')= (Fn_1>Fn_1 - I’Fn_l - 1 _an--'

’Fn—1~1_F2—Fn—4’Fn)

we have

d=1, dy=F,, dy=F,, d,_ =F,_,
and

d,=Fn—(F"_l—-l—Fz—...—-Fn_4)=Fn_1,
and consequently,

2ol D-pi) 1 =L -1+ L

2 10le, ) =PI = 2 2],("2_4% o
Define

2 if j=1,

| T i=F,, 2<2i<n-4,
Tl it j=F,_,
0 otherwise.

Then from above we have

Z=Z’—j—".

1
k 4y 1<j<F,,,

Suppose now that for some other choice of I, say,
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I={]<if<..}S{1,2,...,F, , ~1}

n

we have
c, m,
th(zm) pl~t= 2 d> 22 L
1<j<F ., ] 1<j<F,, ., 1
Let k& denote the least integer such that ¢, # my. There are several
possibilities.
(a) Suppose ¢, >m,.

Assume | satisfies F2i< k<F2i+2 and 2i<n-4. Then
1——0"“2>2c].|1j'r||> 2 m.||j1'||+(ck—mk)||k'r||> 1
i »Fy !

by exactly the argument given in [I(a). This is a contradiction since n is
even.

On the other hand suppose F,_, <k<F, Then

_.1'
l—0o" 2>
> ch.llj'rll> 2> mlrll+ I krll > 1+ 0%~ 3 + gn2
i J<F,

n-a

which is a contradiction since o< — —%

<k<F

n+1°

Finally, suppose F, Then

-1

1-0"2> 2¢ljrl> 2 mlljrll+\F,_ 7+ IF,7ll=
]

I<F,_4

=14g" 3 _gn-14gn
which is again a contradiction.
(b) Suppose ¢ <my.

As in Case 1, we first deal with the case k= 1. For ¢, = 0 we have

||]T||
Z < 2 A 1 ! —o""2),

< &35 <31
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For n = 6 thisyields

C.
_27!<1.95137...
7

and
_l= L_;._l_.z 22
JZ j Fz Fy '
which is a contradiction.
For n> 8 this gives
Z < = 3"3 = 2.28470 ..
and
m,
s+l LT 53333
]Z' ] F, 3

which again is a contradiction.

For ¢, =1,

.Z—j-i<1+ 2 ol 1
7

_ _ n
R K G

If n= 6 thisyields

C.
]Z'—].]-<—3T%-T—”(—o—o4)=2.07869...
and
s SR SR U
,2, M
which is a contradiction.
If n=8 then
C.
g1+ g (o
2 <l+gpgg-o
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and

1 1 1 i

— —_— + — + — — . .
; 7 F2 F, F, = 2.41026
which is a contradiction.

If n> 10 then
C. 1
]Z—].l<1+m(—o)=2.41202...

and

m.
s+l b1 545833
j F, F, F,

\.M

which is a contradiction.
Thus, we may assume k> 1. This implies m,=1 and ¢ =0.

(i) Suppose k=F,, where 2i<n—6. Then

C; m, c,
(25) Z——Z—’= > - 24
I j=Fy ] >Fy 1
We now estimate the two sums on the right-hand side of (25).
First,

s s ¢l

_]
J>Fy; i J>Fyy F21+2 ”F21+ 21’“

//\

[ ) .
<——(1-0"2- 2 ¢ =
[ g4+ a (1-0 < ¢ llitlt)

___L_._ 021'— l)

1 — 4l+4

since ¢;=m for j<F,,. Also

> M V5 g% > V50% _ _Y50n1
i

2i<2jen-4 1 —o¥ 1+ g2(-D°

Therefore,
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1 m. C.
7 (E7 79>

o o2 g2i+? g2i-1 4 gn-2 N

= ry r )

1— ok 1— glit4 1— gdit4é

+——12—_8 2 021'_L_1_=
1 —0°""% 2i+2<2j<n-4 1+ g2n-2

_ 021'(1 _ 04i+4)+ (02i+2 + g2i-1 4 0"“2)(1 . 041') N
(1- 041')(1 _ o4i+4)

+ 0n—3_02i+3_ oh—1 B
1_0271—8 1+02n—2

_ 02i+3 _(061'—1 + 06i+2 + o6i+4)+ on—2 _ on+4i—2
- (1_o4i)(1__04i+4)

on—3 gli+3 on—1
+ - >

1__02n—8 1+02n—2
>02i+3_(06i—1+o6i+2+06i+4)+on—2_an+4i—2
= (1_a4i)(1__04i+4)
n—1
+ gh—3 _ g2i+3 1_: 5-—5 since n—3>2i+3
g
S 02i+3 _(06i—1 + 06l'+2 + U6i+4)+ oh—2 _ 0n+4i—2
= a- 04i)(1 . 04i+4)
_ 02“_3 + 0n~3 _ an—l + U3n—5
1+ o2n-2 -

S 02i+3 __(06i—1 + a6i+2 + 06i+4)+ 0n—2 —ght4i-2
= (1 _ 04i)(1 _ a41'+4)
_ 02i+3 _ 0n—2 + o3n—5 >
S 02i+3 _ (061'—1 + 06i+2 + 06i+4)_ 0n+4i—2
> —

a- 0.4i)(1 _ a4i+4)

o2it3 4 g3n-5
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02i+ 3 (02i+ 3 gbit3 _ g6i+7 4 010i+ 7) _
(1 _ a4i)(1 _ o4i+4)

(06:'—1 + 06i+2 + 06i+4) + an+4i—2
(1 _ 041’)(1 . o4i+ 4)

+ 0371—5 =

_ 061’—1(1 + 0.3 _ 04 + 05 _08 4+ g4i+8 + 0n—2i—1) +
(1 _ 04i)(1 _ 04i+4)

+ g3n-35 >

o =081+ 03— o0t + 05 —0b+ 0%)

3(2i+ 6)-5
(1= o%)(1 = o4+ %) + 365 >

— g6i-142

6i+13 6i+ 1 6i+13
>(1_04i)(1_04i+4)+0' > — gttt 4 oY% >0

which finally is a contradiction.

(ii) Suppose k= F,; where 2i=n-—4. Then

Z-C-i< > chIiTII
. \]'

e <
T i FaTF,

<(1—o"‘2— 2> c-ll]"rll)——ﬁ——<
j<F J 1

w4 __02n
-2 -5 V5  —(a" 5 +a" 1))
DA A g T 1— g2
and
m; n-4 n-1
e 1 1 52 __c .
/>%;. J Fn—4 Fn—l V_(l_a2n—8 1+02n—2)
Thus,
LT 3%y
ﬁ(f i ,Zi)/
on—4 Un—l on—S 0n—2

= — + =
/1_027:—8 1+ g2n-2 1 — g2 1_0271/
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0n—4 on—l an—S 0n—2

/1_02n 1_02n+1_02n 1 — g2n

since
- 1 1
" 4(1_02n—8_ 1_02n)+
_ 1 1
+ 0" l[l_ozn”1+02n—2)=

2n—-8 2n n—-1¢-2n-2 2n
n—4 o —0 + -9 (o + o) >
0 ((l _02n-—8)(1_02n)) (1_02n)(1+ 02n—2)

>ogh—4g2n-6 L gn—1,2n-4 _ 53n-10 4 o3n-35> 0.

This computation makes use of the inequality

0»2?1— 2 + 0-2'1

< 0271—4
(1-02")(1 + 027~ 2) ’

ie.,

02 + 04 <(1- 02n)(1 + 02n—2)= 1+ 02n—2 . 02n ~gin-2
which follows from

02 +0%<1 since o2n2_gn_gin-23,

Therefore,

m, C. o -1 n—2 n-35 n—4
—l-(Z—]‘L*'Z—]L)? o""*+a +0 +0 ~0
7 ]

ﬁ 1— 0271
which is a contradiction.

(iii) Suppose k=F, . In this case observe that

1-0""2> 2cljrl>
7

2 mlirl+ 2 liF,Tl =
F,

sty 4 ]>Fn—-l

- 1+o"‘3+(j>FZ' 1 c].)o".
'

Thus,
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——0"_2—0”"3 _an—l
Z ¢, < - = ——=7<2
>F_y ! o o

Since the ¢; are nonnegative integers then there is exactly one j, say j,,
greater than F, | such that c = 1, and all other c].’s are 0. Therefore,

which is a contradiction. This completes the analysis of Case 2 and (16) is
proved.

A LOWER BOUND ON u

We next turn our attention to lower bounds for u_ . In this section
we prove that the upper bounds for u(p,,) given in (16) are lower bounds
for u, in general. That is,

t
1 . _
I+ =Z’;_F__ if Fy3<m<Fy, 4
(26)  u, > - 1
1+k2;F—2; 7y i FaaS <m<F,,..

Proof. Define f, =/, =0, f;=1 and

fon=tam 1 v F ;

27) 2""1 n=2
f =f, 4+
2n+1 m-1"F,
Thus,
n—2
1 1
fog =1+ 2 +—+ ,
2n k=1 Fyy  Fhy g

n
1
f =14 2 —=.
2n+1 sz
Consider the statements:
A(n): qun >f2n.
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A'(n). If 1rESF2 and (1), 1r(F2”)>F2n_1 then
n
1
um>f, +—=—.
2n an
B(n): uF2n+1>f2n+1'
B'(n). If ne SF2 Y and m(1), m(F,,,)> F,, then
n
1
u(m)> f. + —
2n+1 F2n+l

We will prove these statements by induction on .

First note that A'(n) and B'(n) apply under complementation in
the fqllowing form:

A'(n): If n€ S, and (1), w(F, )<F, . then
Fyp 2n 2n-2

1
u(m)>f, +—=—.
2n an

B'(n): If TESg, . and m1), w(F,, )< F, | then

1
u(m) < f. + .
2n+1 F2n+1
(This can be seen by considering the maps z > F m T 1—2z for m=2n
and m=2n+ 1.

To begin the induction, a modest computation (left to the reader)
shows that all the statements hold (occasionally vacuously) for n=1
and 2.

Assume now that the statemenets hold for all values less than some
value of n> 3. We prove that they also hold for the value n.

(a) Assume wESF and let x = m(1).
2n

(a;) Suppose x<F, ,.

Consider the block of integers B={x+1,...,x+ F,, .} Let
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y denote the left-hand most element of B in =, ie., y= w({) and
z€B, z+y, z=7() implies j> i. Thus

1 1 . .
=——+ > +
u(m) 7 — % Ug, Son-1 F, (by induction)
(28)
= f2n'
By complementation, (28) also holds if =(1)> Fy, 1 or if 1r(F2n) =
=x'<F, , orif x'>F, .
(a,) Suppose F, ,<x, x'<F, .
Consider ', the permutation induced by = on {1,2,..., F, .}
Then by B'(n— 1),
' 1
umzuwwY>f, +——=Ff .
2n—-1 an_ 1 2n
Hence, in either case, u(n) > f5,> and A(n) holds.
(b) Assume we S,
2n+1
(bl) Suppose x = w(1) < an— 1
Consider the block B={x+1,...,x+ F, }. Let y denote the

left-hand most element of B in 7.

(i) Suppose y<x+ F, . Then

1 -

————t f, =
F2n“1 2n

u(m =

+ u =
y—x F,7

1 1
=f, .+ +
=l By By -l

by the definition of f. Thus, B(n) holds in this case provided

1 1 1
(29) + >
F2n—1 F2n -1 F2n—2
ie., if
1 > | S S Fyn_3
F2n 1 F2n—2 F2n—1 F2n—-2F2n—1,



or

F2n—2F2n—1 >F2n—3FZn _F2n—3'

However, since

Fop 1Fyy y=FyFpy _3—1

then the preceding inequality is equivalent to F, _, > 1, which holds
since n= 2.

(ii) Suppose y=x+F, .

Consider the subblock B'={x+1,...,x+ an_l} of B. Let :z
be the left-hand most element of B’ in =. There are two possibilities.

l. z€x+F,, _,. Then

1 1

u(m) = + u
m>"% Fyp_1

+f2n—1 =:f2n+1

and this subcase is done.
2. z2>x+F,, ,. Then

z>x+F2n_2=y—F2n+F2n_2=y—F2

n-1

ie.,
y<z+ an_1

and consequently,

1 1 1 1
+ + > =+ + .
y—-x y—z uF2"_1 F2n F2n—l -1 f2n—l

u(m)=

Hence, this case is taken care of provided

1 1 1
+ > ,
F2n F2n—l_—1 F2n—2
since then
1
u(m) > F,_, tomo1= ome1
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However, this follows from

1 1 | Fon_1

> - —_
F2n~l'—_l F2n——2 F

2n F2n—2F2n ’
which in turn follows from the equality F, _,F, =F7 , —1 since

n> 1. This completes case (b,). As before, this argument also applies if
x>F, or a(F,)= x'< F, . or x'>F, .

(b,) Suppose F,, , <x,x'<F,.

Assume without loss of generality that x < x'. Consider the block
B={x—-F, ,,...,x—1}. Let y and y' denote the left-hand most
and right-hand most elements, respectively, of B in @. Then
1 + 1

30 um> 5t

+u Fy g

Now, the least possible value the right-hand side of (30) can take is
achieved when x' is as large as possible, i.e., x'=F, , and when x is
small as possible (since y,y' € B), ie., x=F, _; + 1. Also, if {y,y'}#
#{x-F,, »x—F, ;+1}= {1,2} then decreasing either one of
y or y' decreases the right-hand side of (3). Hence, we can assume either
y=1, y'=2 or y=2, y' = 1. In fact, the smaller value always occurs

for the choice y =1, y'= 2. Consequently, (30) implies

1 1 1
u(m) > + v =ttt by (29)
Foo 1 Fy—2 "W-17F, , "1
=f2n+1'

Thus, in both cases (b;) and (b,), u(m)=> fonsq and B(n) holds
for case (b).

(a') Assume 1rES1,,2 , and x=m(1), x'=n(F,,) with x<x'

Furthermore, assume x,x'> F -1

Consider the block B={x-F, ,,...,x— 1}. Let y and y’
denote the left-hand most and right-hand most elements, respectively, of
B in 7. Then
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1 1
> L4
Mm> 5t =5t .,

> 1 + anl_ 5t fon_1 by the argument in (b,)

F
1 1
=famt F,

=

2n-1
w—7s>f_ + =.
n——2 2n F2n

This proves A4 '(n).
(b’) Assume 1r€SF2n+l, x = w(1), x’=1r(F2n+1), x<x' and
x,x'>F2n.

As usual, let ¥ and y' denote the left-hand most and right-hand
most elements, respectively, of B = {x — Fy,...,x—=1}in m

(b;) Suppose y,y'<x—F2n +Fy,_,=x—-F, .

Then A'(n) applies in this case and we obtain

1 1 1

u(ﬂ)}x_y"'xr_y: +f2n+_F2n>

1 1 1

> + + +f =
Fon  Fapypy =2 Fp, 2n
2 1 1

= + + -+ f =
F2n F2n+1 -2 Fz’l—l el

2 1 1 1

=f + + + - ‘

2n+1 (an F2n+1_2 F2n—1 F2n—2)

Thus, B'(n) holds in this case provided we can show

2 1 1 1 1
+ + — > R
F2n F2n+1~2 F2n-1 F2n-—2 F2n+1
ie.,
2, L 11 1
F2n F2n—2 F2n—1 F2n+1 -2 F2n+1

However, this follows immediately from

F2n F2n—2 F2n—1



- F2n—3 — F2n~3
F2n—2F2n—l anan—s“l

since n> 2.
(by) Suppose y>x—F, .
Thus, y>x—-F,, ,+1 and

1 + ,1 7+ u .
x—y x' —y Fan

31 u(m) >

Arguing as before, we can show that the right-hand side of (31) is mini-
mized by choosing x'=F,  ,, x= Fp,+1, y=F, ,+2 and
y'= 1. Thus, (31) implies

1 1
u(m) > + +f, =
Fopoy =1 Fy =1 72n
1 1 1
=f .+ + + =
=1 Fyy oy Fap =1 Fy—1
+

= fon+1

2n—1 2n-1 " 2n+1
1 (1 1 1
> f. + + + - >
41 D Fyih VFyu_y o Fyp_ -1 an_z)
1
>f2n+1+FZn+1
since
1 1 2 1
+ > >
F2n—1 F2n~l_1 F2n—l F2n—2
for n> 2.

(b)) Suppose y'>x—F, .
Thus, y’>x—F2n_1 + 1 and

1 1
(32) u(1r)>x_y+x,_y,+uF2n.
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Arguing as before, the right-hand side of (32) is minimized by choosing
x=F, +1, x'=F, ,,y=1and y'=x—-F, |+ 1=F, ,+2
Thus, (32) implies

1 1
u(m) = + +f =
Frp Fopy1—Fpp_p—2 721
1 1 1
=f, 1+ + + =
2n-1"Fy v Fyy Fypy1—Fpp =2
=f2n+1 +
1 1 1 1
+ + + — .
(F2n—1 F2n F2n+l _F2n—2 -2 F2n—2)

Therefore, B'(n) holds in this case provided we can show

1 1 1 1 1
33) + + — > .
F2n—l F2n F2n+1—F2n—2—_2 F2n-—2 F2n+2

However, since

1 1 1 1
Fap_s —FZn —F2n-l B FypFon_1Fon_s
then (33) is equivalent to
1 1 > 1
Fone1 = Fanoa=2 Fyppy” By 1 Fap sy
ie.,
Fona ¥ Doy 1 Fop 3> Fopi 1 Foniy = Fopoa = 2

A brief computation shows that this inequality is indeed valid for n> 3
and consequently, B'(n) holds in this case as well.

All cases have now been taken care of and the induction step has
been completed. Therefore, A(n), B(n), A'n) and B'(n) hold for all
n>1 and, by the monotonicity of u,, in m, (26)is proved.

By combining (16) and (26) we finally obtain a proof of Theorem 3,
namely,
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1
1+ 3 - if F,, ,<m<F

k=1 F,, 2t+ 4°

fm ” £ 1
1+ 2————+ if F <m<F .
2t+ 4 2t+ 5

k=1F2k Fzr+3

As an immediate corollary of Theorem 3 we have:

Theorem 1. For any sequence x in [0, 1],

(34) €)= inf liminfalx,,, —x,|< (1+ 2 1)“Ea.

m+n m
n m— oo

Proof. Suppose (34) does not hold. Thus, there exists a sequence x
in [0, 1] such that for all n there exists € > 0 such that for all suf-
ficiently large m,

nix xm|>(1+e)a.

m+n

By Theorem 3, we know that forall § > 0, if N is sufficiently large then
forany w€ S, there is a subsequence

I={i <iy<..}S{1,2,...,N}

such that

u(m) = %' |Gy, ) — (i)

Let m be specified by the N consecutive terms (x

a M+1°XM420 -
,xM+N) (M large) of x by

XMaa() S¥Mam2) S S X2

(ties are decided arbitrarily). Thus,
1> %’v(xM-k-n(i,H_ o7 xM+1r(ik)) >
> ol + €) %'Iw(ik+1)— 7@) 171> (1+ e)(1 - 8)

which is a contradiction for & sufficiently small. This proves Theo-
rem 1.8
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AN EXTREMAL SEQUENCE

In this section we construct a sequence which achieves the upper
bound in Theorem 1.

We begin by defining an infinite sequence 3(0), y(1),»(2),... as
follows:

For n>0, write n= 21' €;F,, in the unique representation
i>

guaranteed by Lemma 1. Define
€.
_ ]
y(n) - i>zlv F 2,'.

Theorem. Forall a+# b,
(35) | (@ — b)(¥(a) — y(B))| > 1.

Proof. Write a= 2, eIF,, b= 2> eP)F,.. We first observe that
i>1 i>1

(35) holds if b= 0. For in this case it is sufficient to show that y(a) > -3—.
This inequality certainly holds for all g if it holds for those a of the form

F,, . However, since y(F om) = F—zlm- then the claim is verified.

Hence, we may assume without loss of generality that a> b > 0.

Next, note that if (35) is violated for some @,b with e@e(®)> 0
for some i then it is violated for a'=a — Fy; and b'=b —F,,. Thus,
we may assume

(36) €D =0 forall i

Let ¢ be the largest index satisfying e{? > 0. Then €{®) = 0 (by (36))
and e].(“) = e].“’) =0 for j>1t.

Case 1. For some s, €@ >¢ =0, and €@ = e®) =0 for
all i<s.

In this case it follows that y(a) > y(b) and (35) is equivalent to
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37 (a—b)((a) - y(b))= 1.
Observe that if
@ —-bY@)—ydN=1

for some a', b’ with 0<a’'<a, y(@)<y(@), and b'= b, y(b') > y(b)
then (37) also holds. Thus, we can normalize a and b asfollows:

(a) Take 6,(”) = el(”) =1 and all other el.(“) = 0.
(b) Take € =(ef?, e),... ) to have the form

t 4 Sy r—1 -1

e®=(,1,1,...,2,...,1,1,0,1,1,...,2,1,1,...,0,..

t

52 4 5y

...,0,1,1,1,2,1,1,1,...,1,0)

where s=s5, <t <s,<1,<...<s,<t <t (Thatis, €® consists
of blocks of 1’s separated alternatively by 0’s and 2’s.) We obtain this by
noting that if €{®) = €{?) = 0 then we can replace €(®) by €®?, formed
by changing (%) to 1. Also,if a block of 1’sin €(®) is bounded at each
end by 0’s then we can change one of the 1’stoa 2, thereby increasing
both b and y(b).

Thus, we can assume

a=F21+F2sl’

b=(Fy_y+ ...+ Fyy )+ Fy —Fyp +...

...+ F

2t2_F

2s2+F2

4

F

=F 2sl+1+(F F

2 )t

20-1 2,

.+ (F

iy~ Fas)+ Fay.

Therefore,

_ 1,1
y(a)— F2t ¥ F2s1
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and

FSTE ( Y I B
k=s7+1 Fa th, Fzs,
1 1 1
+ + <
(F2t2 F2s2 F’2tl
1 1 1 1 1 1
< - - +t= )+ (v——5)+...
(F2sl F2s2+2 F2t— 2 F2t) (FZtr F2s,.)
1 1 1
. - +
(F212 F2s2 F211
by Lemma 2. Hence,
(a—b)(y(@) - y(b)) >
2 Fp+ Foy —Fyp 1 F Fyg o1 — Fy ¥ Fpg — . —Fy ) X
1 1 1 1 1
X [+ - + + —
(F2t F2s1 F2sl F2s1+ 2 F2t— 2
1 ) =
Fy, th, th,
= Fy gy = Fp ¥ Fyg = = Fy +Fy ()X
1 1 1 1 1
X - + —. . + =1
(F21—2 F2t, F2s,, th1 F2s1+2

by Lemma 3, since
t>t>5>...>t>s >0.
This completes the proof of (35) for Case 1.

Case 2. For some s, € > ¢l =0, and €@ =¢(®) =0 for all
i<s. Thus, y(b)> y(a) and (35) is equivalent to

(38) (@a- b)) —y@)=> 1.

In this case, we can make the following normalizations:
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I In €@, replace...,1,0,...by...,0,1,...,
replace . ..,2,0,...by...,0,1,...,
andreplace...,2,1,...by..., 1,2,....

an In €®, replace,...,0,1,...by...,1,0,...
replace,...,0,2,...by..., 1,0,...,
andreplace,...,1,2,...by...,2,1,..

After these normalizations, €@ and € have the form:

u

E(")=(et(“),O,O,--«,O,Oalal’la ,1, e 0,

s+1°
14
e®=(0,¢?,1,...,1,0,0,0,...,0,0,¢e®)

where et(a)’es(i) (b) e(b)>0 and e(a) =0, e,f“)=l

e® = 1,
b —
€,”’; = 0. Then

3

a-b>F, -2F, ,-F), ,- —F),=

>F) —F, +F) —Fy ,=F;_ ;.
Also,
2 1 1
y() - y(a) = - - - .= >
2s F2s+2 F2s+4 F2u
1 1
= =
F2u+1 F2v—1

by Lemma 2 and (i) since v> u. Therefore
(@a—b)(y®d) —y@)=1
and (35) holds in this case.
(ii)

€@ =(e9,1,1,...,1,e9,,0),

s+1’

€® =(0,0,0,...,0,0,¢®)
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where €(®,e@ e} >0 and €@ doesnot have two 2’sin it.

s+1°

Subcase 1. t=35+ 1.
Then
€@ = (e, 0),

e® = (0,¢®)

and
(@a—-b)(b) — y@) =
(39) G(b) e(i)l
= (@ — e - - =
(es+ 1F2s+2 € Fzs) (Fzs F2s+2)'

For e(®, =¢e{® =¢, the right-hand side of (39) is

1 €2F2

1
R -
242 T2 (F2s Frvr’  FyFysis

e2(F
for e=2 1.

For €{?, =2, ¢ =1, the right-hand side of (39) is

1 2 F2s—lF2s+3
QQF —F, ) {—=—— = > 1.
Zs+2 T2 (F2s F2s+2) FyFassn

For €{9 =1, ¢® =2, the right-hand side of (39) is

F F
2 1 25— 1125+ 3
(F —2F, ) |+ — = > 1.
25+ 2 2s (FZs F2s+ 5 ) F2sF2s+ 3

Subcase 2. t=s+ 2.
Then
a-b>Fy 1 —Fyyy +(€t(a)“ DF,, +

+ (es(i)l = DFy,p— (es(a) —DF, =

- b
=Fyrsy = Q= gNFy — 2= e DF,, , ~ € - DF,,
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and

y(b) —y(a) =

e (] 1) &9 -1 el -1
>4 - S -
F2s F2s+2 F2t F2t F2s+2
(b)
e\ —1
/A I T W T
Fyy Frvr Fy Fyin
-1 e -1
FZI F2s+2
b
=Es()—1 2-el® 2—et(”)_ 1
Fyy Frra Fy, Fia
by Lemma 2. Therefore,
a=b2F,y ,—Fy—Fy ) —Fy2Fy —Fyn—
2 Fpps —Fopr —Fy=Fo g t Fy 1 > Fyppy
b
If es( )> 1 or es(i)1<2 then
(a - b)(y(b) — y(a)) >
1 | 1 1
> F - = F -
2”4(Fzs+2 F2r+2) 2s+"'(Fzs+2 Fyte
2
=F2s+4(F2s+6“F2s+2)> F2s+4 > 1
F2s+ 2F2s+6 F2s+ 2F2s+6
On the other hand, if es(b) =1 and es(i)l = 2 then
(@a— b)) - y(a)) >
2
1 1 i
= (F —-F. ) |= - = > 1.
2+2 2t (FZt F21+2) F2tF2t+2

This completes the proof of (35) for case (ii).
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(i) t>v=u=s.
Then
€@ =(e9,0,0,...,0,0),
e® =(0,e,1,1,1,¢®)
where €@, ¢e(®) ,e®) >0 and €® does not have two 2’sin it.
Subcase 1. t=s5+ 1.
Then
el® = (es(i)l , 0),
e® = (0, ¢®).
However, this case has already been considered in Subcase 1 of (i).
Subcase 2. t= s+ 2.
Then
a—b> et(”)FZt -
—(Fy g —Fpy_ 1 + (2 =~ DF,,_, + (P — DF,)=

= (€ - 1)F, + F,,_,+ F,

t—2 -1

- (et(f)l -DF,,_, - (es(b) - DF, =

_ b b
= (D = DFy + Q—€ePDF,,_, — (P - DF, + F) |

and
Wy,
B - Y@= o+ —— . — >
F2s F2s+2 F2t~—2 F2t
(b b ()
S 1 +fs)—1_ 1 +_1_+€t(_)1—1_€t”=
Fye Fy Fyy n Fy Fy F,,
(b b (a)
1 +es)—l_2—et(_)l_et“—l
F2s—1 F2s F2t—2 F2t
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If €2>1 or e, <2 then

a-b2F, ,-Fy+F, 2F ,—Fy ,2Fy,;
and

1 1 1
y(®) - y(a) > — _——

Foe v Fy oy Fy

1 1 1 1

= — - =

F2s—1 F2s+2 F2s+4 F2s+3

by (i) in Lemma 2. Therefore, (a— b)(3(b) — y(@))= 1 in this case.
On the other hand, if !9 =1 and et(f)l =2 then es(b) =1 and

@ DYYB) ~ y@)> Fyy | 71— = 1.

251

This completes the proof of (35) for the case (iii).

In summary, we have shown (35) holds in all possible cases and the
proof of the theorem is complete. 8

The proof of Theorem 2 is now immediate. All that is required is to
observe that x; as defined is just ay .- In fact, (35) actually implies the
stronger equality (4), namely,

inf inf n|x*

* —
m+n xml—'a
nzl m=>0

CONCLUDING REMARKS
In a certain sense, sequences x for which

(40) inf  inf nlx,, .

-x |=«
nz1 m=0 m

n

are “spread out” as much as possible. However, we do not currently know
of any such x which is essentially different from x*. Do they exist? It is
curious that in fact, x, is nowhere dense.

A natural guess for a sequence x for which C(x) is large is one

-219—



given by x, ={n6} for a suitable irrational 6. In fact, such sequences
are not too bad, the best one (of course) being given by x,', = {n7}. In
this case

CGW=§%¥§=03&%%.“<a=03%4w61.u

However, the first n terms of x' and x* are always order isomorphic
which may help explain the good behavior of x'. We have not shown that
the permutations they induce are the only ones which achieve equality in
Theorem 2 (and, in fact, for small n, such permutations are not unique
up to reflection. For example, m=(1,3,2) and #'=(3,1,2) have

mﬂ=um3=%y

The connection of our results with diophantine approximation is the
following. It is well known (see [5]) that for any e> 0, the inequality

IT—B]<V_qe

can hold for only finitely many ¢ with (p, g) = 1. This can be restated as

€

| -
41 >
(41) qligrll 75

for all sufficiently large q. The reason that this does not contradict The-

§%¥5 and the

value of C(x) can definitely be affected by what happens infinitely often
for n= 1. What(41) would imply in this framework is

1

orem 1 is that (41) is not valid for g= 1 since | 7| =

C'(x") = lim inf lim inf n|x’ —x >
()= lm nf lon mfn 1 o = X 12

(with equality, in fact). However, this is clearly not best possible for
arbitrary sequences x in [0, 1] since C'(x) can be arbitrarily large.
For example, by choosing

X(’)=(x6’,x6‘,...,xg,xf,xf,...,xf,...)

t t

we find
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C'XD)> ta.

In this case of two (or more) dimensions, problems of this type are
well known to offer substantial difficulties. Even in the case of two-
dimensional diophantine approximation (with the sup norm), the value of

1

sup lim inf q_z_ max {llg0 i, llgell}
8,p q

is not known. Is is known (see [1]) to be at least Vg This implies that

the analogue C,(x) of C(x) for a sequence x€ [0, 1]X [0,1] with
the sup norm d, namely,
1
C,(*)= inf lim inf n2d(x

m+n’xm)’
nz>1 m>0

can remain above I/% — ¢ for any e€> 0, for a suitable sequence x.

This is probably not the best possible value, however. It would be very
interesting to know just what the truth is in this case, as well as in higher
dimensions.
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