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The problem of determining a phylogeny (evolutionary tree) for a given set of
species using protein sequences is introduced and defined as the Steiner problem in
phylogeny (SPP). In this note we'show that the SPP is NP-complete, even when
restricted to the special case of just two amino acid triples (in which case the SPP is
the ordinary Steiner problem in {0, 1}"). This reinforces the recent emphasis on the
development of heuristic techniques for the problem.

INTRODUCTION

According to current theories of evolution, existing biological species have
been linked in the past by common ancestors. Following the Darwinian
school, many scientists have represented postulated ancestral relationships
by trees, called phylogenies. The ancestors of certain groups of species, such
as vertebrates, have left a rich fossil record of their existence which can be
used to make comparisons with similar existing species. This has led to a
fair degree of agreement on the structure of phylogenies of these groups.
Unfortunately, for most groups the record is inadequate and in some cases,
unknown or nonexistent. In these cases there is often considerable disagree-
ment over the nature of the phylogenies which describe their histories.

Over the past two decades attempts have been made to overcome these
problems by using techniques which construct tentative phylogenies from
protein sequence data rather than using classical numerical taxonomy.
(Some of these methods are discussed in [1,3,11,14]) These methods
typically construct a phylogeny for a particular set of species given a unique
protein sequence for each of the member species. It is assumed that all the
sequences represent the same protein (typically the respiratory protein
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cytochrome ¢, hemoglobin a or 8, or fibrinopeptide a or 8) and are of the
same length. The symbols in each sequence normally represent amino acids.
Each amino acid can be represented by an ordered triple of nucleotides.
Since there are four nucleotides, 4, C, G and U, there are a priori 64
possible triples. However, only 20 of these have been found to occur in
nature. Thus, each sequence consists of a string of symbols from an
alphabet of size 20.

Several workers have found it advantageous to convert amino acid
sequences into nucleotide sequences for the construction of phylogenies.
This is because differences between different pairs of amino acids can vary
whereas differences between different pairs of nucleotides can conveniently
all be assigned unit weight. (Descriptions of this process can be found in
[3,11,13] and especially in Watson [14].) Henceforth, we will assume that
the data have undergone such a transformation.

The basic objective of this approach is to construct a phylogeny in which
each given species and its sequence is represented. It is usual first to
construct an unrooted phylogeny which does not have the point represent-
ing the common ancestor of all the given species distinguished. A common
ancestor is then specified by directing the phylogeny, i.e., by giving each link
in the tree an orientation directed away from the common ancestral point
(e.g., see [2, 10, 12)).

In this note we will be concerned with the construction of undirected
phylogenies. The endpoints of each link in the phylogeny represent nucleo-
tide sequences which can be examined at each site for differences. The
number of sites at which differences occur is associated with the link. A
commonly used optimality criterion (which we also use) is to minimize the
sum of these numbers taken over all links. A phylogeny selected under this
criterion is said to be of maximum parsimony.

We remark that it is not assumed that the evolutionary history of the
given species necessarily followed the path laid out by the phylogeny of
maximum parsimony. This tree is merely a minimal solution to an extremal
problem in this model, a criterion which is often used to describe natural
phenomena. In the next section we make these notions more precise.

PRELIMINARIES

For a metric space (S, d), define a weighted graph' G = G(S, d ) with
vertex set S so that each edge {s, ¢} has weight d(s, ¢). For a finite subset
X C S, a minimum spanning tree T(X) for X is a tree (i.e., connected, acyclic
subgraph) with vertex set X such that the sum of edge weights of 7( X )is a
minimum. Finally, a Steiner minimal tree S(X) for X is a tree having the

'For undefined graph-theoretic terminology, see [9].
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minimum possible length over all trees in G which contain X in their vertex
sets.

It is well known that for arbitrary weighted graphs, finding a Steiner
minimal tree (SMT) is in general, an NP-complete problem (see [6] for a
discussion of these concepts). More recently, it has been shown that for
graphs whose edge weights come from certain metric structures, such as the
Euclidean plane or the L, plane, finding SMTs is also NP-complete (see
(5, 7D.

The problem we are considering, i.e., that of constructing phylogenies, is
easily seen to have the following formalization: For a fixed alphabet 4, let d
denote the Hamming distance on A", i.e., d((a,,...,ay), (ai,...,ay)) is
equal to be the number of indices i such that a; # a;. In the metric space
(A", d), the Steiner problem for phylogeny (SPP) is:

(SPP): Given a set X C A", find a Steiner minimal tree S(X) for X.

What we will show in the next section is that even when 4 consists of two
elements, the SPP for A" is NP-complete.’

THE MAIN REsuLT

Let 4 = {0,1}. For a fixed positive integer N, denote A" by Q,. The
graph G = G(Qy, d) is just the 1-skeleton of the N-cube. To show that the
Steiner problem for Q, is NP-complete (which we will denote by SPQ), we
will reduce the known [6] NP-complete problem Exact 3-Cover to SPQ. A
general instance of Exact 3-Cover (X3C) has the following form:

INPUT: ¥ ={F, F,...,F,}, where | F;|=3 and
FEC({L2...3m}=1L, ,1<i=sn

X3C: Does % contain m sets F,,...,F, whose union is I, ?
i m 3m

i

Note that if % does contain such F;, then they must be disjoint.

We now give the details for the construction of the desired corresponding
instance of SPQ. To begin with we set N =4m(n + 3m + 1). A point
q=1(4,,---,qy) € @y can be thought of as consisting of n + 3m + 1
blocks, each of length 4m:

g=(Xy, Xis- s Xap; Yypeees ¥op). (1)

To each integer i,0 < i < 3m, define a point x, by taking in (1)
4m _
X, =(1,1,...,1) =1

2Strictly speaking, we really should be considering the problem of deciding whether X has a
Steiner tree with length at most some prespecified value L.
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and all other X, and all ¥, to be

(0,0,...,0) =0.

Similarly, for 1 < j < n, define s; to have X, = 0 for all , Y = land Y, =0
for all k + j. Intuitively for i # 0, x; will correspond to the integer ; and Y
will correspond to the 3-set F.

Next, if i € F; we define a sequence of points x; (k),0=k=8m—1,as
follows:

x;, (k) =(Xo,. ., X,(k),.... Xy Yi,....Y(k),....Y,),
whereXuz(_),us&i,YDZ(_),v#jand
dm—k k

- —t— ——t—
X}ZI,Y;-(I‘)I(O,O,...,O,1,1,...,1), O0<k=4m

’

k—4m 8m—k _
X% = (0,0,...,0,1,1,...,1), dm<k=8m-—1Y =1

Also, define xo,j(k) as above for all j, k, where 1 <j <n,0 <k <8m — 1.
Note that x; ;(0) = x; for 1 <i < 3m. Observe (for future reference) that
the x; ;(k) form “chains” from x, to s;, where consecutive points on the
chain have distance 1.

The set X = X(¥) will consist of the 8m(3m + 1)n points {x; (k):0=i
=3m,1=<j=n,0=<k=8m— 1}. We point out that X has a spanning tree
with maximum edge length 2. This implies (see [5]) that any edge in an SMT
for X has length at most 2. Define

Ly=4n(8m —1) + 4m

and let Lg( X) denote the length of an SMT for X.
Facr 1. If $ has an X3C then Ly(X) < L,,.

Proof. Let E,... F be an exact 3-cover of I,,. For 1 <k < 'm, adjoin
to X the Steiner points s, = (X,,...,X;,, Y,,...,Y,) with X, =0,1 <, <
3m,Y, = 1, Y, = 0, j # Ji- An easy calculation shows that X* = X U {s,:
1=k < mj} has a spanning tree of length L,; just form the spanning tree

consisting of all length 1 edges for X*. O

Let us call an SMT for X greedy if it uses all the length 1 edges between
points in X.
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FAcT 2. X has a greedy SMT with length Lg( X).

Proof.  Suppose T is an SMT for X with length strictly less than any
greedy SMT. Thus, some edge e of length 1 does not occur in 7. Adjoin e to
7, thereby forming a cycle C. Some edge e’ in C must be incident to a
Steiner point s of T (since the length 1 edges in X do not form any cycles).
Form the SMT T” by deleting the edge e’. Since

length(e’) = 1 = length(e)

then
length(7”) < length(T).

However, T is by hypothesis an SMT so that in fact
length( L") = length(T) = Ly( X).

Note that 7" contains one more length 1 edge between points of X than T
has. Fact 2 now follows by induction. O

Facr 3. If Ly(X) < L, then % has an X3C.

Proof. By Fact 2 we can assume X has a greedy SMT 7T’ with
length (7) < L,. As usual, we can assume without loss of generality
that every Steiner point of 7’ has degree at least 3. For 0 << 3m,
define the subtree T; of T” to be the tree induced by the points x; (k)
1 =j=n,0<k=38m— 1. By construction, all edges of T, have length 1.
We can think of 7" as being formed by connecting the 7, together with a set
E of edges, each of which is incident to some Steiner point. Observe that
since

ZICngth(T,.) =4n(8m — 1) (2)
then l
Y length(e) < 4m (3)

A key fact to be noted is this: For any

| <iy<iz<iy<isandanyq € Q,,
5
2 d(q,T,) > 4m, (4)
k=1

where d(q, T;) denotes the minimum distance from ¢ to a point of T,. (This
is the reason that subblocks of length 4m are used in the definition of the

X, j(k)')
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(1v) k

F1G. 1. Possible components of E.

A consequence of this observation is that no component of E can have
more than two Steiner points. Otherwise, some Steiner point of 77 would be
connected by paths in E to (at least) five different 7,’s which, by (3), would
force

length(7”) > 4n(8m — 1) + 4m = L,,.

Thus, there are at most four types of connected components E, which can
be formed by edges from E (also called full Steiner subtrees; see [5] or [8]).

In Table I we list for each case a lower bound on the length of E,, the
decrease A(E,) in the number of components due to E,, and p, a lower
bound on the ratio length(E, ) /A(E,). Note that for all of E, length(E) <
4m and A(E) = 3m; thus, p(E) <4/3.

Therefore, the only possibility is that case (ii1) holds (with equality) in a//
cases. In other words, 7" must have m Steiner points, each of degree 4, with
all connecting edges of length 1. However, this is only possible if these

TABLEI
lower bound on
Case length( E,) A(EY) p
1) 2 1 2
(ii) 3 2 3/2
(iii) 4 3 4/3
(iv) 5 3 5/3
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Steiner points are m of the s’s, i.e., with X, = Oforalli,Y, =1,7, Y, = 0,
# j,- Consequently, the correspondmg E’s form an exact 3 cover of I3m O

The preceding facts have as 1mmed1ate consequences the following re-

sults.

wh e

THEOREM. The Steiner problem for the N-cube Q, is NP-complete.

COROLLARY. The Steiner problem in phylogeny is NP-complete.
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