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ABSTRACT

Many algorithms for sorting # numbers {al,a .,an} proceed

g3
by using binary comparisons a; :aj to construct successively
stronger partial orders P on {ai} until a linear order emerges

(e.g., see Knuth [Kn]). A fundamental quantity in deciding the
expected efficiency of such algorithms is PT(ai <aj | P), the

probability that the result of a. :aj is a, <a. when all linear

orders consistent with P are equally likely. In this talk we
discuss various intuitive but nontrivial properties of
PT(ai <aj | P) and related quantities. The only known proofs of

some of these results require the use of the so-called FKG
inequality [FKG, SW]. We will describe this powerful result and
show how it is used in problems like this.
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INTRODUCTION

Many algorithms for sorting n numbers X = {xl,...,xn}

proceed by using binary comparisons x :xj to build successively

i
stronger partial orders P on X until a linear order can be
deduced (e.g., see Knuth [Kn]). A fundamental gquantity in
determining the expected efficiency of such algorithms is

Pr{x_ <x, |P}, the probability that the result of x_.:x. is x < X
i3 i3 i 7

when all linear orders consistent with P are equally likely. In
this paper we discuss a number of results of this type and show
how a fundamental inequality, called the FKG inequality, can be
used to prove them as well as a variety of related results.

We begin our discussion with a motivating example. . Assume
there are two teams of tennis players, say A = {al,...,am} and

B= {b,,...,b }. Suppose that the players are inherently totally
1 n

ordered by an unknown £ineanr ordering which may be any permuta-
tion of the players, say a, < a, <b, < ..., each having

1
probability z;fgyr (thus, all are equally likely). Assume
further that in a match between two players, the higher ordered
player always wins. Thus, as we observe the outcomes of various
matches, we can learn more about the underlying total order of
the players.

Suppose that at some point in time we have seen various
matches between A players and have thereby learned some partial
ordering A = {a, <a, ,a, <a, ,...} of A, and, similarly, we know

T T S

a partial ordering B = {b <b, ,...} of B,

. <b, ,b, <b
Jl 32 33 J4

Let C,C',... be observed outcomes of matches between a's
and b's, e.g.,

C: a; < bS’ a, < b3, a, < b2"" .

Suppose that in all matches between a's and b's so far, a's
always lose to b's. It is certainly reasonable to conjecture
that the events C and C' are mutually favorable, i.e.,

Pr(C'|A and B and () z_Pr(C'lA and B). (1)
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Since, by definition,
Pr(C'IA and B and ) = Pr(A and B and C and C')/Pr(A and B and C)
then (1) is equivalent to

Pr(C]A and B and C') > Pr(C|A and B).

Indeed, inequality (1), first conjectured in [GYY] was very
recently proved by Shepp [Sh]. Shepp's proof employed the so-
called FKG inequality, a result which has just begun to be
exploited in combinatorics.

The same intuition which leads to (1) also is present if
in addition to knowing A and B, we also know that C" has occurred,
i.e., various a's have previously lost to other b's. The
occurrence of C" somehow reinforces the feeling that the a's are

generally weaker players than the b's and so, C and C' should
still be mutually favorable, i.e.,

Pr(C'|A and B and C and C") > Pr(C'|A and B and C"). an

Surprisingly, this is nof the case, as the following example
shows.

Example, m=n=2, A=B=¢
€= {a,<b,}, C' = {a;<b}, C" = fa,<b }.

We show the allowable linear orderings in the table below. Thus,

my =12 1

Pr(C" =54 = o

Pr(C and C") = é%-= %3

1 1} 5
Pr(C and C' and C") = VA
and so,
w _ 5/26 5 2 "
Pr(C'lCandC)="173——'§<—3*—Pr(C'|C).

Again, however somewhat unexpectedly, (1Y) does hold if A
and B are both £ineat orders. This was first shown by Graham,
Yao and Yao [GYY] using basically combinatorial techniques.
Subsequently, Shepp [Sh] and Kleitman and Shearer [KS] found much
shorter proofs, again using the FKG inequality.
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Ordering C c' c
a, < a, < bl < b2 1 1 1
a; < a, < b2 < bl 1 1 1
a; < b2 <a, < bl 0 1 1
a, <a; < b1 < b2 1 1 1
a, <a; < b2 < bl 1 1 1
a, < b1 < a) < b2 1 0 1
a, < b1 < b2 <a; 1 0 1
a, < b2 < a; < bl 1 1 1
a, < b2 < bl <ay 1 0 1
b2 < al < a, < b1 0 1 1
b2 <a, <a < bl 0 1 1
b2 <a, < bl <ap 0 0 1

Table

In the following sections of the paper, we will describe
the FKG inequality and its recent numerous generalizations, and
illustrate its use in connection with problems involving linear
extensions and order preserving maps of partial orders.

THE FKG INEQUALITY AND ITS GENERALIZATIONS

In some sense the FKG inequality has its roots in the old
result of Chebyshev which asserts that if f and g are both
increasing (or both decreasing) functions on [0,1] then the
average value of the product fg is at least as large as the
product of the average values of f and g (where the average is
taken with respect to some measure p on [0,1]). 1In symbols,

1 1 1
fgdp > fdu gdu. @)
0 0 0
In the case that u is a discrete measure we can restate (2) as

follows: If f(k) and g(k) are both increasing (or both decreas-
ing) and p(k) > 0, k= 1,2,3,.., then
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zf(k)g(k)u(k) zf(k)u(k) Zg(k)u(k)
k k k

>
S uo > st > o)

k k k

i.e.,

z £(k) g (k) u(k) }: oS 32 £ (k) u(k) z g (k) u(k) . @
k k k k

The proof of (2') (and (2)) follows once by expanding the
inequality

z (£()-£(3)) (g(D)-g()) ud)u(3) > o.
i,

The FKG inequality, due to Fortuin, Kasteleyn and Ginibre
[FKG], was discovered in connection with the proof of certain
natural conjectures arising in statistical mechanics (in
particular, dealing with correlations of Ising spin systems).

They trace rudimentary forms of the inequality back to Griffiths
[G] (who was also interested in these questions) and Harris [Ha]
(who was investigating the probabilities of certain events in
percolation models). It turns out that special cases were also
anticipated by Kleitman [K1] (see [K2]) and Marica-Schénheim [MS],
among others.

Basically the FKG inequality is an attempt to extend (2')

to the case where the underlying set is only partially ondered,
as opposed to the £fofally ordered index set of integers occurring
in (2'). The setting is as follows. Let (I,<) be a distributive
lattice. That is, T is a (finite) set, partially ordered by <,
on which two commutative functions A (greatest lower bound) and

V (least upper bound) are defined which satisfy the distributive
laws:

x A (yVz) (xAy) v (xAz)

for all x, y, z ¢ T.

x V (yAz) (xvy) A (xvz)

It is well known that without loss of generality we may
assume ' is a sublattice of the lattice of all subsets of some
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finite set partially ordered under inclusion with x Ay =xNy
and x vy =X JYy.

Let u:T 9~RO, the nonnegative reals, satisfy
uE)u(y) < uxvy)u(xAy) for all x, y e T. (3)

We call a function f:T R {nereasing if
x <y = f(x) < f(y) for x, y e T,

(with decreasing defined similarly).

The FKG inequality|: If f and g are both increasing (or both

decreasing) functions on a distributive lattice T and u:T ~ R
satisfies (3) then

z £(x) g (x) u(x) Z u(x) > z £ (x) u(x) 2 g(x) u(x). (4)

xel xel xel xeT

0

The original proof [FKG] of (4) was not so simple. Several
years after (4) appeared, Holley {Ho] found the following
generalization of FKG:

Suppose o,B:T +~ R satisfy

0
a(x)B(y) < al(xvy)B(xAy) for all x, y e I.

Then for any increasing function 9:T +~RO

za(xm(x) > ZB(X)G(X)- )
X

X

Rather recently, Ahlswede and Daykin have given a remarkable
strengthening of (4) and (5).

THEOREM [AD2]. Suppose we are given four functions
By, 83T > Ry which satisfy

a(x)B(y) < y(xvy)d(xAy) for all x, y e T, (6)

Then
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a(X)B(Y) < y(XVY)S(XAY) for all X, YC T (7
whete
X v Y= {xvy:xeX,yeY},
X A Y = {xAy:xeX,yeY} and

for zC T, £(2) = z f(z).

The proof of (7) is surprisingly simple. To begin with, it
follows from our previous observations that it is enough to prove

(N]

the following result (where 2 denotes the family of all subsets

of [N] = {1,2,...,N}): Suppose u,B,y,G:Z[N] »-mo satisfy

a(x)B(y) < y(#y)8(xy) for all x, y & 2[N]. (6")
Then

a(X)B(Y) < y(XVE)S(XAY) for all X, ¥ C 2 M, )

PROOF: The proof is by induction on N. We first consider the
[ {¢,{1}}. Denote a($) by % and a({1})

etc., defined similarly. The system (6')

case N =1, Then 2
by al, with BO, Bl’
becomes:

a B < YOG
a. B, < v.8.,
10— '1°0
(8)
< §
%P1 < Y1800
1F1 = Y18
It is easily checked that if either X or Y consists of a single

element then (7') is an immediate consequence of (8). The only
interesting case is X = {¢,{1}} = Y. 1In this case, the
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inequality (7') we are required to prove is

(ao+al)(eo+sl) 5_(y0+y1)(50+61). 9)

Equation (9) would follow instantly from (8) if one of the

two occurrences of Yldo in (8) were YOGl instead. As it is, we

have to work a little (but not much) harder. If any of

&0 BO, Yy OF 60 is zero, (9) follows at once. Hence, by a

suitable normalization, we can assume

The system (8) becomes
1
and (9) becomes

(L+a) (148)) < (L+y,) (145D "

Again (9') is immediate if Y, = 0 so we may assume Yy > 0. Since

(9') becomes harder to satisfy as §. decreases, it is enough to

1

aiB

prove (9') when 61 is as small as possible, i.e., 61 = —%—l. In
1
this case we need
%181
(1+a)) (1+6)) < () (1 + - ),
i.e.,
a., B
171
ay + Bl f-Yl + Y .

However, this is an immediate consequence of

(Yl—al)(yl-sl)_z 0

which is implied by (8')., This proves the result for N = 1.
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Assume now that the assertion holds for N = n - 1 for some

n > 2. Let a,B,Y,G:Z[n] a-mo satisfy the hypotheses (6') with
N =mn and let X, Y gLZ[n] be given. We will define new functions
[n-1]

a'y, B', Y', 8" mapping 2 = T' into R, as follows:

o' (x') = z alx), B'(y") = 2 B(y)
xeX yeY
x'=x\{n} y'=y\{n}
YEY = > v@, s = Y s,
zeAN weX ¥
z'=z\{n} w'=w\{n}

Thus, for x' ¢ T'

a(x') + a(x'Un}) if x' ¢ X, x' Y {n} € X,

a(x") if x' e X, x'" U {n} £ X,
a'(x') = (10)
a(x'Un}) if x' £ X, x' U {n} e X,

-0 otherwise.

Observe that with these definitions

a(X) = Za(x) = 2 a'(x") = a"(T")
xeX x'eT'

and
B(Y) = B'(T"), v(XVY) = v'(T"),
S(XAY) = &' (T").

Thus, if
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o' (xR <y (x'uy")s'(xhy ') for all x', y' € T'  (11)
holds, then by the induction hypotheses
a(X)B(Y) = o' (THB'(T") < y"(T")S'(T") = y(XVY)6(XAY)

since T' VT'=T', T" A T'

T', which is (7').

It remains to prove (11). However, by (10) this is exactly
the computation performed for the case N = 1 with x'<+> ¢ and
x' U {n}+>{1}. Since we have already treated this case then the
induction step is completed. This proves the theorem of Ahlswede
and Daykin. D

To prove the FKG inequality from Ahlswede-Daykin it suffices

[N]

as usual to restrict ourselves to the case that T = 2 = T,
Observe that if A and B are upper ideals in T (i.e.,

X, vy € A= x Uy ¢ A) then the indicator functions f = IA and

g = IB (with IA(X) = 1 iff x € A) are increasing. Taking
a=f=vy=8=yin (6') and X = A, Y = B in (7') we have

n(A)u(B) < u(AvB)u(ArB). (12)
But
WAy = zu(x> - zf(X)u(X),
xXeA xeT
u(B) = Zg(X)u(X),
xeT
L(AAB) = z w(z) = zf(Z)g(Z)u(Z)
zcAANB zeT
and LAV = > u) < Y ).

zcAVB xeT
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Thus, (12) implies
> F@a@u@ S ue) > S £(2)u(2) > () u(z)
A Z yA YA

which is just the FKG inequality for this case. The general FKG
inequality is proved in just this way by first writing

an arbitrary increasing function f on T as f = ES AiIA where
i

Ai > 0 and Ai are suitable upper ideals in T. That is, for

we have

H
~
N
~
=
~
N
~
]

2 Z RNIORS

zeT zeT 1

z Ai z IAi(z)u(z), etc.,

i zeT

and now apply the preceding inequality.

Before concluding this section, we make several remarks
concerning the Ahlswede-Daykin result. Setting a=f8=y =68 =1
we obtain

Ix||¥] < |xv¥||xAY| for all X, YC o N1, (13)

This was first proved by Daykin [D] and has as immediate
corollaries:
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{a) (Marica-Schonheim [MS])
|A| < |aAMA| for all A C o N,

(b) (Keeitman [K11). For any upper ideal U and any Lower Ldeal
N]
L 06 2 »

L] - 2Ni lu||L].

(e)  (Seymour [Sel). For any two upper ideals U v, 04 2 [N],

l’

N
'U]_Huzl = lulmzl <20,

The special cases (a) and (b) actually appeared in the
literature before the FKG inequality was found. We leave as an
exercise for the reader to show that the starting inequality (2')
also follows from this.

A good summary of these and related results can be found in
[AD1], [D1], [D2]. Far ranging generalizations of the Ahlswede-
Daykin Theorem were obtained by the same authors and appear in [AD2].

LINEAR EXTENSIONS OF TWO CHAINS

Suppose (X,<) is a partially ordered set in which X = AU B
is a disjoint union of two chains A = {al<...<am} and
B = {b1<...<bn}. Of course, relations such as a; < bj and
bk < 32 are also allowed. Consider the set A of all (m+n)! 1 - 1
mappings of X onto [min] = {1,2,...,mn}. Assign a probability
?;£EYT to each A ¢ A, i.e., assume they are all equally likely.

Let Q depote the set of all Linear extensions X\ of X, i.e.,
A € A such that

X <y = AMx) < A(y).

Let P and P' both be unions of subsets of A of the form
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{}\:A(ai )<)\(bjl),)\(ai )<)\(bj ),.a.}

1 2 2
(i.e., a's always lose to b's).
THEOREM 1 (Graham, Yao, Yao [GYY]).
Pr(P|QP") > Pr(P|Q). (14)

PROOF. We will give a proof of this result (due to Shepp [Sh])
based on the FKG inequality. The original proof used explicit
combinatorial pairings of certain types of mappings in A.

Define a lattice I' with elements of the form x = {xl,...,xm}
with 1 < x. < ,.. <x <m+n. Wesay that x < x' if x, < x!
-1 m— — i—"1
for 1 < i < m. Define

=
<
»

= {...,max(xi,x;),...},

=i

>

»
]

{...,min(xi,xi),...}.

It is easily checked that with these definitions T is a
distributive lattice.

For each x € T we can associate a unique A; e A by setting:

)\)—{(ai) Xi,

A;(bj)

]
<

where [m+n]\{x1<...<xm} = {yl<...<yn}. Finally, define

i 1if A= e Q,
u(x) =

0 otherwise,
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1 if X~ € P,
~ X
f(x) =
0 otherwise,
1 if A; e P',
£'(x) =

0 otherwise.
To apply FKG, we must check:
HCOUE") < uGevx") u(xax"). (15)

Suppose n(x)u(x') = 1. Then A- ¢ Q, =, Q. Ifa, <a, in X
then X X * J

A;(ai) =x, <x, = A;(aj)

it
»
A
]
i

A;{'(ai) = >\}—{.(aj)

and so,

1 1 4
AEvE'(ai) = max(xi,xi) < max(xj,xj) = X;V;.(aj).

Similarly, if bi < bj in X then
XVX

A;(V;(n(bi) < X_v—‘(bj)‘

On the other hand, if a; < bj in X then

K;(ai) =x, <y X;(bj)

]
]
A
«
|

Agi(ay) = X;.(bj)

i.e.,
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xi <i+ j-1, L <i+ -1
Thus,
'
A;V;,(ai) = max(xi,xi) <i+j-1
so that
M (3) <5 (B

The argument for bi < a, is similar. This shows that

Aivg, € Q, i.e., u(xvx') = 1, In this same way it follows that

u(xAx') = 1. Therefore, we have shown that
pE ") = 1 = p(xvx ) uxAx') =

and consequently (15) always holds.

The final condition to check before applying FKG is that
f and f' are decreasing. To see this, suppose x < x' and

f(x') = 1. Then by definition, A;, e P = LE) Pk where

k = {x: A(a )<>\(bJ )R

1 1

_' -—
Thus, for some k, the elements X of x' satisfy all the
A}

constraints X, < i +j1-l,..., imposed by P,. But since x < ;',

1 1 k

1 1

i.e., x, < x. for all i, then x, <x, < i +j,-1,..., as well,
i— "1 i, = 4 - 1-1

This implies that A— e P C Pand f(x) = 1, i.e., f is

k —
decreasing.

The FKG inequality can now be applied to the functions we
have defined, yielding:

Zf(x)f @ ) Zu(x) > meu(x) Zf @u® 16

xel xel



228 R.L. GRAHAM

Interpreting (15) in terms of Q, P and P', we obtain

el Q] > |a| || (17)

i.e.,
Pr(BP'[Q) > Pr(P|Q)Pr(P'|Q)

which implies (14). O

As the example at the beginning of the paper shows, (14)
does not necessarily hold if A and B are not linearly ordered.
A somewhat different example [GYY] showing this is the following

Example:

A= {al<a2}, B = {bl<b3,b2<b3}.

In addition, in X = AUB we have b, <a, and a, <b,. Let P

1 2 1 2
denote the event {al<b1} and P' denote the event {a2<b3}. An

easy calculation shows
3 5 _
Pr(P|P1Q) = ¢ < g = Pr(P|Q).

ORDER PRESERVING MAPS

In this section we show how the FKG inequality theorem can
be used to prove a broader class of similar results for the class
of order preserving maps on a partially ordered set. We say that
a mapping p:X »> X' between partially ordered sets (X%,<) and
(X',<) is onder preserving if x, y € X with x <y = p(x) < p(y).
Note that p is not required to be 1 - 1, (The use of the same
symbol < for both partial orders should cause no confusion). Let
R = R(X,X') denote the set of order preserving maps of X into X'.
As before, we will assume that all p € R are equally likely.

We need one further definition. For x e X define tange(x)
to be {p(x):peR}.

THEOREM 2. Suppose X is the disfoint union o4 A = {al,...,am}
and B = {bl,...,bn}. Let P and P' both be unions of subsets o4
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the form {p:X+X':p(ai)<p(bj),p(ak)<p(bl),...} (L.e., certain
a's ate always mapped below certain b's).

Suppose for all a ¢ A, b ¢ A which are related by <,
range(a) N range(b) = @, (18)
Then
Pr(B®'|R) > Pr(P|R)Pr(P'|[R). (19)

PROOF: Define a lattice (T,<) by taking the points of T to be

fequfnces z = (Xl";"xm;yl"":yn) where X yj e X' and
z < z' means xi.i X and yj 3_yj for all i, j. Further, define
- - T 1]
zvz' = (...,max(xi,xi),...;...,min(yj,yj),...)
- - 1 1
z Az' = (...,min(xi,xi),...;...,max(yj,yj),...).

It is easy to check that with these operations, T is distribu-~
tive.

To each z ¢ I', associate a map p;:X -+ X' by defining
pz(ay) = x,, p;(bj) =¥y
Finally, define the three functions:

1 if o e R,
u(z)

1]

0 otherwise,

1 if p; e P,
£(z)

0 otherwise,
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1 if p; € P',
£'(z) =

0 otherwise.

In order to apply the FKG inequality, we must check that f
and f' are both decreasing (this is basically the same argument
as before) and that u satisfies the "log supermodularity"
condition

u(E)u(E')‘i u(zvz"u(zaz') for all z, z' ¢ T.

Again the argument is quite close to the previous one with one
exception. In showing that u(z)u(z') = 1 = u(zvzhu(zaz') = 1
we must know (for example) that

T ]
mln(xi,xi) > max(yj,yj)

t T
if Xy < yj and X, < yj. While this is not ordinarily always the

case, with the assumption (18) in force, it does indeed hold.
Using this observation several times, the verification that p, f
and f' satisfy the hypotheses of FKG is accomplished. The con-
clusion of FKG now implies (similar to (16) = (17))

e R||R| > |BR||[PR]

which in turn implies (19). o

Whether or not the "range" condition (18) is needed is not
currently known.

LINEAR EXTENSIONS OF PAIRS OF GENERAL PARTIAL ORDERS

It is natural to try and extend Theorem 1 to linear
extensions of more general partial orders. However, numerous
examples like those previously presented show that 4ome restric-
tions on the partial order will be necessary. One such extension,
conjectured by Graham, Yao and Yao [GYY], and proved by Shepp
{[Sh], is the following.
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THEOREM 3. Suppose (X,<) 48 a parntial order where X 45 a dis-
joint union o4 two parntial orders A = {al,...,am} and

B = {bl,...,bn}, L.e., a; and bj are all palwise incomparable.
Let R denote the set o4 Linear extensdions of X onto [min] and

Let P and P' be sets of maps ) 04 X onto [mtn] which are unions
o4 sets of the foxm

{hin(ay )<A(b Y,A(a, Y<A(b, ),... 0.
1 I 2 I

I alt elements of R are given equal probability then P and P'
are positively cornelated, L.e.,

Pr(P|PYR) > Pr(P|R). (20)

PROOF: The proof is similar to that of Theorem 2 but with an
extra complication. To begin with, we choose a large fixed

integer N and define T = PN to be the set of all sequences

= (xl,...,xm;yl,...,yn) partially ordered by setting

N} NI

- . 1 1 . . <
< z' iff X, 2%y and yj > yj for all i and j where 1 < Xy
y. = N. As before define

« 1 4 A}
z Az' = (...,min(xi,xi),...;...,max(yj,yj),...)

i

1] 1
(...,max(xi,xi),...;...,min(yj,yj),...).

This makes T into a distributive lattice. For z ¢ I', define a
mapping pS: r > [N] by s (a, ) = X, (b ) = yj. We will assume

all N wh such mappings are equally llkely.

Let R, P, P' be the subsets of mappings ot z ¢ T, which

preserve the order given by R, P and P', respectively, i.e.,
Mx) < Ay) = p;(x) < p;(y), with u, f and f' defined to be the

corresponding characteristic functions.
It is straightforward to check that the hypotheses of the
FKG inequality are satisfied. The potential difficulty for u

which required the range disjointness condition (18) does not
occur here since A and B are incomparable by hypothesis.

Thus, by the FKG inequality we obtain
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|FBR|[R| > |FR|[FR

. (21)

Define R to be the subset of R in which all components of z e R'
are distincet (with P and P' defined similarly). Since

then

Each P75 z e ﬁ, determines a Linear extension A of X + [m+n] in
the obvious way, with the relative ordering of the p;(ai) and
p;(bj) determining their ranks in [min]. Furthermore, for

N >m + n, each linear extension A:X_+ [mtn] is generated exactly

the same number of times by the p;, z € R, Of course, the

preceding comments also apply to P and P'. Thus,
Pr(PlR) = lim Jfgid-= lim iE;Bl
Moo [R| moe R
and

o
Pr(ABYR) - 1im JEETR]
N-»e0 IR|

The desired conclusion (20) now follows and the theorem is
proved. o

CONCLUDING REMARKS

We close the paper with a discussion of a number of questions
dealing with linear extensions of partial orders and potential
applications of the FKG inequality.

1. It would be quite interesting to know under exactly what
conditions two events (= subsets of linear extensions of a
partially ordered set) are mutually favorable. Theorems 1
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and 3 give some conditions under which this occurs but they
certainly do not tell the whole story. Is it true, for
example, that Theorem 2 holds for linear extensions rather
than order preserving maps?

Recently, Stanley [St2] proved the following result (a
strengthening of a conjecture of Rivest [R] which was
conjectured by Chung, Fishburn and Graham [CFG]). Let X be
a partially ordered set with n elements and let x € X be a
fixed element. Let Ni denote the number of linear extensions

A of X onto [n] for which A(x) = i.

THEOREM. The sequence N 1 A8 Logarnithmically concave.

This result had been established earlier in [CFG] for the
case that X can be covered by two chains (= linearly ordered
sets), Stanley's proof required the use of the so-called
Aleksandrov-Fenchel inequalities from the theory of mixed
volumes (see [B] or [Fel]) similar to those for mixed
discriminants which have recently been used by Egoritsjev [E],
[vL] to prove the infamous van der Waerden permanent con-
jecture. It is known that the FKG inequality can be used
very naturally to prove the log concavity of various
sequences of combinatorial interest (e.g., see [SW]). Can
Stanley's result be proved using the FKG inequality (or the
Ahlswede-Daykin theorem?) Is the analog of Stanley's theorem
for onder preserving maps true as well?

Fishburn [Fil], {[Fi2] has recently studied the following
problem., If x and y are two elements of a partially ordered
set X on n-elements, let us say that x domi{nates y (written
X -+ y) if more linear extensions A:X + [n] have A(x) > A(y)
than A(y) > A(x). He has shown that there are partial orders
X for which the cycle x -y » z > x is possible (the smallest
such X known has 31 elements). More generally he has con-
structed partial orders X for which every vertex of this
(directed) domination graph D(X) has outdegree at least one.
What is the least X such that D(X) has a cycle? 1Is it
possible to characterize those directed graphs which occur

as D(X) for some X? What if we require

[{A:A)>A() ] > a|{A:A(y)>A(x) 1]

for some (fixed) o > 1? What is the largest o for which the
corresponding domination graph can have a cycle?



234

R. L. GRAHAM
The following nice problem of Stanley (see [Stl]) is still
open. Let X be a partially ordered set on n elements and

let (al,az,...) be a sequence of nonnegative integers satis-

fying :E:ak = n, Define fx(al,az,aB,...) to be the number
k

of order preserving maps p:X » {1,2,3,...} such that
[xeX:p(x)=1]| = a;.

Is it possible for two different partially ordered sets X
and X' to have

fx(al,az,a3,...) = fX,(al,az,a3,...)

for all (al,az,a3,...)? Stanley has shown that if such X,

X' exist then n > 7.
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