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Abstract

The celebrated theorem of TurAN answers the following question exactly:

How many edges can a graph with n vertices have without containing the complete graph K, as a
subgraph?

In a recent paper, ErDOs, FAUDREE, Rousseau and ScHELP investigate the analogous question for the
complete bipartite graph K, ;. In particular, they study the following problem: What is the largest number
f(n, k) such that no matter how f(n, k) edges are deleted from K,, the resulting graph always contains K, , as
a subgraph for all a and b satisfying a+b<n—k. Erp6s et al. show that for & < e” %, it is always possible to
remove slightly more than n/2 edges from K, and thereby prevent the occurrence of some K, , in the
remaining graph for a+b<n—[en].

The same authors also raise the question of estimating f(n, k) when the removed edges form a spanning
subtree of K,. In this note we show that it is possible to obtain surprisingly sharp estimates for this problem.

Introduction

The celebrated theorem of Turan [3] answers the following question exactly:

How many edges can a graph with n vertices have without containing the complete
graph K, as a subgraph?

In a recent paper [2], Erpos, Faupree, Rousseau and ScHeLp investigate the
analogous question for the complete bipartite graph K, ;. In particular, they study the
following problem: What is the largest number f(n, k) such that no matter how f(n k)
edges are deleted from K, the resulting graph always contains K, ; as a subgraph for
all a and b satisfying a+ b<n—k.

They find that a rather abrupt change occurs as k increases from 1 to 2 by proving:

@) f(,0)=n/21-1,n22;

@ rin =] "] nes,

(iif) For fixed k > 2 there exist positive constants 4 and B (depending on k) such that
for n sufficiently large

n/2+A/n< f(n,k)<n/2+B/n.
(iv) For O<e<e™*, there is a  =8(e) >0 so that for n sufficiently large
6*
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1 -
f(n, [en]) < 3 +don.

The last result shows that it is always possible to remove slightly more than n/2
edges and thereby prevent the occurrence of some K, , in the remaining graph for
a+b<n—[en]

In [2] Erpos et al. raise the question of estimating f(n, k) when the removed edges
form a spanning subtree of K,. In this case, a relatively large number (n — 1) of edges are
removed, but they are required to be rather well-behaved. In this note we show that it is
possible to obtain remarkably sharp estimates for this problem.

The main result

Let f(n)denote the least integer with the property that for any spanning tree T of K,
and any a+b<n— f(n), K, ,SK,—T.

Theorem.

logn
fm=(1 +0(1))1—-
og3

Proof. Let £¢>0 be fixed. We first show that

logn
(n Sm)>(1—¢)
g3

lo

for infinitely many n. Suppose (1) fails to hold for all sufficiently large n. Take n to be of
the form

1
n=(1+3+...+3" ) = 5(32'—1)

for a large r to be specified later. For the spanning tree T of K, we choose T,, the
complete ternary tree with 2r levels (see Fig. 1)

1
Finally, we take a to be 5(32’— 1).

AL N

Fig.1. T,,, the Complete Ternary Tree with 2r Levels
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Assume now that for a fixed ¢>0 there is a number b with

logn

+b>n—(1—
a n—( 8)log3

such that K, .S K, — T;,. Note that expressed to the base 3,

2r r2's
—N— ——
n=11...11, a=202...02.
Also,
lo 1
gn < 2r — 0g2 < 2r.
log 3 log 3
Thus,
lo
) b>n—a—(1—e g'; > n—a—21—gr.

log

The number of vertices of K, which do not belong to K, , is just n —(a + b) which is at
most

logn

1-—
( 8)10g3

<21 —eyr.

Their removal splits T, up into components C;. The two vertex sets A and B of K, ,,
(where | A| = a, | B| = b) must each be contained in disjoint unions of these C;. The plan is
to show that any union of C;’s which contains at least a vertices must in fact contain
more than a+2(1 —¢jr vertices, leaving fewer than n—(a+2(1 —¢&)r) <b vertices from
which to form B, which of course is a contradiction.

Let the number n —(a + b) of vertices which do not belong to K, , be denoted by ar.
Thus

a<2(l—g).

We must make a careful analysis of the sizes and relationships of the components C;
into which T,, is partitioned by the removal of the ar unused vertices.

To begin with, we will always remove lower level vertices before higher level vertices,
i.e., vertices closer to the bottom are removed first. Thus, if vertex v in level m is removed

1
then the top (parent) tree loses 5(3"“rl —1) vertices and three new complete ternary

1
trees T, are formed, each with 5(3"‘ — 1) vertices (see Fig. 2). We say that the resulting

four quantities

1(3"‘+1 1 1(3"‘ 1) 1(3'" 1) 1(3"' 1)
2 T2 T2 T2

form a family.
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% A""
£ AR

Fig. 2

After all oar points have been deleted, ar + 1 families will be formed. Let us examine what
happens if some of the C; are combined to form a set C containing 4. The cardinality

1 1 1
IC| of C is a sum of |Cy|. For each family of the form — 5(3""rl - 1),5(3"' -1, 3 3m—-1),
1
3 (3™ —1) there are just 8 possible sums it can contribute to |Cl, depending on which

members of the family occur in C. These sums are:
1(3 <3m—1) 1(2-3"‘) 1(3"'+ 1, —1
2 'y 2 £ 2 'y 3
! 3m-1 ! 2-3"-2) ! 3-3"-3) d 0
—(3"-1),-(2-3"-2),=-(3-3"— a .
2 2 2 "

Hence, each family contributes an amount of the form — (5 3" +v) to |C| where
d=+3, +2, +1 or 0and |y|=3.
Since A< C then

1 i |
3) 3 —1)=a=|AIZ|C]= Y (6;-3"+7)
4 02
Thus, we have
1
)] (32'—1)< Z 6;3m + Z 1S Z 63™+3(ar+1).

i=0 i=0 i=0

Since 3(ar + 1) has at most

[log 3(ar+ 1)] < 2logr
log 3 = log3

1 ar
nonzero digits base 3 (for large r) then 3 (3" —1)— ). v, has the form
i=0
2r—v
——
111...11x,...x, (base3)
2logr

where v < .
log 3
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So, by (4) we have

2r—v
ar ,—-M v
(5) Y 83m2 1l 1l x...x,2 Y 3vH!
e i=1
2logr
where v< Tog3 a<2(1—¢) and 6;=+3, +2, +1 or 0.
og

ar
We now proceed to normalize the sum ) §,3™. To begin with, we may assume
i=0
that |6, < 2 since otherwise, we simply increase m; by one. Next, observe that if m;=m;
for some i#j then by writing
0;+0;=30;+6;

with |6,/ <1, {6;/ <2, we have

6{3’"‘ + 51'3"'" = 5,~'3mi+ 1 + 6j’3m,-
where either at least one more dis 0 or Z |6;] has decreased. Hence, we can continue this

i
process until all the m; in (5) are distinct. We can therefore rewrite

™Me

2r
53™ as Y B3
i=0

i=0

where ;= +2, +1 or 0 and at most ar + 1 f's are nonzero. Equation (5) becomes

2r—v
3v+j—1
=1

2r
) 2 B3z
i=0

J
Next, suppose for some i we have
Bi+l=27 Bl=—2

2-3¥1-2.3i=1-3*141.3

Since

we can replace these f's by the new values f;,, =1, B;=1, thereby decreasing Y  |Bil.
In the same way (B, 4, B)=(1, —2),(2, —1) and (1, — 1) can be replaced by (. blﬂi):
=(0, 1),(1, 2) and (0, 2), respectively, thereby either decreasing ) |8,| or keeping Y 1B

1 4
constant and decreasing the number of negative f’s. Hence, we may assume that in the
sequence B=(B,,, Bar_1, - - -» Bo) NO positive B;, , is followed by a negative B,

Let i, be the largest index such that g, # 1,1, < 2r. We know that iy 2 (2 — a)r since at
most ar+1 f’s are nonzero. There are several possibilities:

(a) Suppose f,, #0. Then by the construction of the C;, §,, is positive and by the
normalization process, fi,,_, =0 so that
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2r—2

(6) Z ﬂ31 32r_2 Z 31 32r 32r 1_2 32r 1.

i=0 i=0

(b) Suppose B,,=0 and B, =0. Thus, B looks like

B=0,1,1,...,1,0,8, ..., B0)

2r—1 ip—1 2r—1

25,3'< EERINE A

i=ig+1 i=ig

and

which contradicts (5') for large r since

2logr

v< and i, =(2—o)r>2er.

log 3
(c) Suppose f,,=0 and B, =2. Thus, § looks like

B=0,1,1, .., L2 B \....B0

where B, _20 by the normalization process. Hence
2r—-1 ig =2 2r—1 )
(7 Zﬁ3'> Y 342-30-2- % 35 Y 3i40.301
i=ig+1 i=0 i=i,

Note that the preceding arguments apply even if i, = 2r — 1. Therefore, if (5') holds then
by (6) and (7)

1 > 1 2r ] 3
[Cl= = Z 03"+ 7))z < Z p3— —(ar+1)>
2i 0 21 0 2

®)

2r—1 ) ) 3
>5 Eio g3t i(ar+1).

Consequently, the number of vertices of K,, which can be used for B is at most

2r—-1 ] ) 3
n—ar—|C|<n—§ y 3‘—3'°‘1+§(ar+1)—ar<
) L
2r—1 ) ig—2 ] 12r—1 ] 1 )
<3 Y 3+ Yy 3‘+ar<5 Y 3'+6-3’°+ar.

i=ig i=0 i=i,
On the other hand, by (2)
[Bl=b>n—a—2(1—¢)r
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2r—1 2r—-1 o1
>3 Y 3-21-¢r=< Z 3'+— Y 3-21—¢r>
i=0 i=ig i=0
(10)
2r 1
>— Z 34 30 —2r.

Since a < 2 and iy > 2¢r then (9) and (10) are contradictory for large 7. This shows that (1)
must hold for infinitely many n.

To show that in fact (1) holds for all sufficiently large n, a very similar but somewhat
more detailed calculation must be made. In place of a complete ternary tree we now use
for T a “balanced” ternary tree T(n) on n points. These trees are structurally very
similar to complete ternary trees. However, they have the property that when a vertex
at level mis removed from T(n), the three new trees formed from vertices at levels below
m are all balanced ternary trees on sets of vertices which now can differ by at most one
in cardinality. It is not hard to show that such trees exist on any number of vertices. By
keeping careful track of the perturbations produced by these trees in the preceding
argument, a similar contradiction results. In fact, this argument shows that

finy> logn B (1+¢)logn

log 3 loglogn

for any fixed ¢>0 and all sufficiently large n.
We next must show that

!
(11 fimy<(1+¢) 12g§

for all sufficiently large n. The basic fact we need for the proof of (11) is the following
result.

Lemma. (F. R. K. Chung and R. L. Granam [1]). Let T be a tree with at least o
vertices. Then for some vertex p of T, the components Tl, ..., T of T formed by the
removal of p (and all incident edges) contain a subset T, ..., T, such that

II/\
II/\

It follows from repeated application of the lemma that any number

log|T .
<|T|-— [ (;g ! 3 ! ]can be written as a sum of component sizes formed by the deletion
og

|:log IT|
of at most
log 3

] vertices from T. For, each time we delete a vertex, we can

guarantee that with the new components formed, the distance from the target value ato
a sum of component sizes we can achieve decreases by a factor of at most 1/3, since if a
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2 4
correction term 4 is needed at stage j, the by generating a component sum in <§A, §A>

1
the new correction term is at most §A' (The reader should have no difficulty filling in

the details.) This proves (11) and the theorem is proved.
It would be interesting to know to what extent results like this hold for almost all a, b
with a+b small enough, and, more generally, for almost all spanning trees of K,.
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