
JOURNAL OF ALGOFUTHMS 4,324-331 (1983)

Finding the Convex Hull of a Simple Polygon

RONALD L. GRAHAM

Bell Laboratories, Murray Hill, New Jersqv 07974

AND

F. FRANCESYAO

Xerox Palo Alto Research Center, Palo Alto, California 94304

Received October 31,198l; revised June 18,1982

It is well known that the convex hull of a set of n points in the plane can be found
by an algorithm having worst-case complexity O(nlog n). A short linear-time
algorithm for finding the convex hull when the points form the (ordered) vertices of
a simple (i.e., non-self-intersecting) polygon is given.

1. INTRODUCTION

The problem of finding the convex hull of a planar set of points P, that is,
finding the smallest convex region enclosing P, arises frequently in com-
puter graphics. For example, to fit P into a square or a circle, it is necessary
and sufficient that H(P), the convex hull of P, fits; and since it is usually
the case that H(P) has many fewer points than P has, it is a simpler object
to manipulate. It is also the case that many fast graphics algorithms on
polygons require that the input polygon be convex, thus making it a useful
preprocessing step sometimes to first transform a general polygon into its
convex hull. A number of algorithms exist for finding the convex hull of a
set of points (e.g., [l, 2,6]), with worst-case complexity O(nlog n) for
1 PI = n. It is also known that O(n log n) is a lower bound just for determin-
ing H(P)-that is, not necessarily rendering H(P) in, say, clockwise order
[7]. This lower bound is proved for a decision tree model with quadratic
tests, which accommodates all the known convex hull algorithms.

An interesting case of the convex hull problem that occurs frequently in
practice is when the points of P form the vertices of a simple polygon (i.e., a
polygon without self-intersections). Several authors have tried to find a fast
algorithm for this problem. Sklansky [5] proposed an O(n) algorithm, which
Bykat [l] later showed does not always work. It has also been noted that the

324
0196-6774/83 $3.00
Copyright 0 1983 by Academic Press. Inc.
All rights of reproduction in any form reserved.

CONVEX HULL OF A SIMPLE POLYGON 325

algorithm that Shamos [4] suggested can sometimes fail. McCallum and
Avis [3] published an O(n) algorithm which, being quite complicated and
utilizing two stacks, entails rather intricate case analysis for the proof of its
validity. In this paper we give a simple linear-time algorithm for this
problem and a proof of its validity.

2. PRELIMINARIES

Let P be a simple polygon in the plane with n vertices. Without loss of
generality, assume that P = (ul, u2,. . . ,u,,) is given by a linked list of its
vertices as they are encountered in a clockwise traversal of the boundary,
where each vertex ni is represented by its X and Y coordinates. (The
orientation of P can be easily tested and, if necessary, reversed.) We will
assume henceforth that all polygons are clockwise oriented. The convex
polygon whose vertices are the set of extreme points of P is called the
convex hull of P, denoted by H(P). For a polygon P, we will use P[ui, uj]
to denote the path in P from t+ to oj (following the orientation of P). For
two paths p = P[q, nj] and q = P[uj, z),J, their concatenation p[u;, nk] is
written as p 0 q. Given two points x and y, L[x, JJ] refers to the (directed)
line segment from x toy. We say that z lies to the right (left) of L[x, r] if t
is in the right (left) half-plane defined by the extension of L[x, y]. More
generally, for a simple path p = L[x,, x2] 0 L[x,, x310 . - . 0 L[x,- ,, xk],

we say that z lies to the right (left) of p if z is in the region to the right (left)
of the extended path p (where L[x,, x2] and L[xk-,, xk] are stretched to
infinity in the appropriate directions). This is illustrated in Fig. 1. For an
ordered triple of three points (x, y, z), we write (x, y, z) = 1, 0, or - 1,
depending on whether z is to the right of, collinear with, or to the left of
L[x, JJ], respectively.

Let the vertices of the convex hull H(P) be (r,, . . . , rh). It is easy to see
that (r, , . . . , th) must satisfy the following conditions (see Fig. 2).

(Al) (q,..., rh) forms a convex polygon.

FIG. 1. z lies to the right of path p.

326 GRAHAM AND YAO

FIG. 2. A simple polygon P and its convex hull H(P).

(A2) Each vertex of P[ri- , , ri] lies either on or to the right of
L[ripl, I;] for 2 G i d h + 1.

We call any path P[ri-i, ri] that satisfies (A2) a pocket of P, and call
,?,[ri-,, ri] the top of the pocket. The closure of the pocket P[riel, r,],
denoted by U[r,-,, r,.], is the finite, closed area bounded by the polygon
L[ri-i, ri]o P[q, ri-J. Lemma 2.1 below implies that (Al) and (A2) are also
sufficient conditions for (ri, . . . , r,,) to be the convex hull. The task of
finding H(P) can thus be described as that of identifying a sequence of
pockets P[rl, r21, P[rl, Q.. . , P[rh, ri] such that the concatenation of their
tops L[r1;, $10 L[r*, $10 * *. 0 L[rh, rJ forms a convex polygon.

LEMMA 2.1. Let P[riel, ri] be a pocket of P. No vertices of P that lie in
U[ripl, ri], with the possible exception of rid 1 and ri, can belong to H(P).

Proof Let x be a vertex of P, other than riW1 and ri, that lies in
U[r,-,, ri]. If x lies either in the interior of U[rjmI, ri], or on L[r,-,, ri], then
x obviously cannot be an extreme point. Assume then that x is on the path
P[rjVl, ri]. By the Jordan Curve Theorem, the line connecting ri and x must
intersect the boundary of P at some pointy # x such that x is interior to the
line segment L[r,, y]. Therefore x is not an extreme point of P. 0

Let P[ripl, ri] be a pocket of P. We define the emergence vertex of
P[ripl, ri] to be the first successor x* of ri in P that lies outside of
U[ri _ i, ri]. The following lemma shows that every pocket has an emergence
vertex and gives a way for computing it.

LEMMA 2.2. Let P[ridI, ri] be a pocket of P, and let y and x be the vertices
that appear immediately before and after ri, respectively, in P. Then, the
emergence uertex of P[ri-,, ri] is x unless (rjel, ri, x) > 0 and (y, r;, x) < 0;
in the latter case the emergence vertex is the first successor x* of x satisfying
(ri-1, ‘;, X*) < 0.

CONVEX HULL OF A SIMPLE POLYGON 327

Proof. The first case follows from the definition of a pocket and the fact
that P is simple. To prove the second case, note that some successor of x
must lie outside of U[r,- , , ri], because otherwise P would have a bounded
exterior (contained in V[r;,- ,, I;:]). The first such successor x* must be
connected to the vertex immediately preceding it by an edge that crosses the
top of the pocket. In other words, x* is the first successor of x satisfying
(rip,, I;, x*) < 0. 0

Suppose two vertices of H(P) are given-say u, and u,,,. Then the chord
L[ui, v,] divides H(P) into two convex polygons H(P)[ur, u,] and

WP)[%v u,], consisting of those extreme vertices of P that lie, respectively,
to the left and to the right of L[u,, v,] (in addition to vertices u, and 0,).
We will call H(P)[o,, u,,,] the leff hull of P[u,, u,]. (Thus H(P)[u,, u,] is
the left hull of P[u,, ?,I.) The following characterization of the left hull
H(P)[u,, v,,,] is an immediate consequence of (Al), (A2), and Lemma 2.1.
Note that the characterization is dependent only on the path P[ul, u,].

LEMMA 2.3. Let (Q,..., rS) be a subsequence of P[vl, u,,,] where u1 and v,,,
are two extreme points of P. Then H(P)[v,, u,,,] = (rl,. . . ,r,) if and only if

Pl) (rl,. . . , rS) forms a convex polygon with rl = u1 and rS = urn.

(B2) P[riel, q] forms a pocket for 2 < i Q s.

The problem of finding H(P) can thus be solved by finding the left hulls
of P[u,, u,] and P[u,, u,] and concatenating them. We will describe an
algorithm for finding the left hull of P[u,, u,] in the next section. In
practice, a convenient choice for u, and u,,, could be, say, two points of P
with the minimum and the maximum X-coordinate, respectively. Without
loss of generality, we now assume that in P = (ul, u2 ,.,., II,, Us+] ,..., u,),
vertices u, and u,,, have been so chosen.

3. THE ALGORITHM

Algorithm LeftHull is given by the diagram in Fig. 3. The algorithm
considers the vertices of P[u,, u,] in the order (u,, u,, uz,. . . ,u~- i). The
main data structure used is a stack Q = (qO, q,, . . . , q,), where q. denotes
the bottom of the stack, and variable t points to the stack top. Variable x
refers to the input vertex under consideration, and y refers to the input
vertex immediately preceding qr. “Pushing x ” means executing [t + t + 1;
q, + x; update ~1, “popping q,” means setting [t + t - 11, and no code is
executed for “rejecting x.” The algorithm halts when the input is exhausted.

Intuitively, the algorithm works as follows. Box I performs the initializa-
tion, and picks the first vertex to the right of L[q,, ql] to be q2. Box III

328 GRAHAM AND YAO

1
q-J- vm *

q--v, i

P-1;
x--Input,

UNTIL (q,,,q+,XbO

Do reject xix-input ENDi
push xi

ZI 4
x-input;

I

m +
IF (q+-,,q+, X)20 THEN

BEGIN

UNTIL x left of L
DO reject xi x--input ENDi

ENDi

lx 1

UNTIL (q +-,.q+, Xl>0

- DO pop q, from Cl END4

push x;

FIG. 3. Algorithm LeftHull. Input: P[o,, u,,,] = (t)m, wl, 02,. ,o,,,- ,). Output
H(W[o,, %I = (409.. .+7r).

X

%-I -L
\qt

L

y’\ \ \ \ \
q, qo

CASE 0) L=L [st+qt] %-I qt
Y \\

E \L
X

\

91 qo

CASE b) L-L [q,, qo]

FIG. 4. The result of executing Box III.

CONVEX HULL OF A SIMPLE POLYGON 329

finds the first vertex x that emerges from the interior of the present convex
polygon Q = (qo, . . . , qr); the two possible cases are illustrated in Fig. 4.
Finally Box IV updates Q and restores its convexity.

4. CORRECTNESS OF ALGORITHM LEFTHULL

We will prove the following theorem in this section.

MAIN THEOREM. Algorithm LeftHull fina the left hull of P[ul, u,J cor-
rectly. The conuex hull of a simple polygon can therefore be found in linear
space and linear time.

We prove the correctness of Algorithm LeftHull by establishing two
lemmas. Lemma 4.1 and Lemma 4.2 together show that the output Q =
(qo,.*-, qt) of the algorithm satisfies the characterization (Bl) and (B2) for
the left hull H(P)[u,, u,].

LEMMA 4.1. The following induction hypotheses are true each time Box II
is entered (Fig. 5):

W) Q = (qo,..., qt) forms a convex polygon where q. = u,,, , q, = u ,
andt22.

(H2) P[q,- ,, qi] forms a pocket for 2 d i < t.

We first observe the following consequence of induction hypotheses (Hl)
and (H2); the proof is straightforward and will be omitted. We adopt the
convention that q,+ , means qo.

Fact. Induction hypotheses (Hl) and (H2) together imp& that P[q,, q,] lies
to the right of L[qi-,, qi]oL[qi, qi+,] for any 2 Q i < t.

Proof of Lemma 4.1. When Box II is entered for the first time, we have
Q = (qo, ql, q2) where q2 is the first vertex to the right of L[q,, ql]. Thus
(Hl) and (H2) are satisfied initially. We will establish the inductive step first qt.4 qt

e \ \ q, \ \ qo
FIG. 5. The induction hypotheses.

330 GRAHAM AND YAO

for (Hl) and then for (H2). When Box IV is entered, vertex x is either to the
left of L[q,-,, qr] or to the left of L[q,, q,,]. In either case, x is external to
the convex polygon Q = (qO,. . . , qt), and it is easy to check that the
execution of Box IV results in a new convex polygon Q satisfying (Hl). We
next consider induction hypothesis (H2). Assume that the stack pointer t has
valuej when Box IV is entered, and that qj, qjul,. . . ,qi+l (where 1 Q i < j)
are popped as a result of executing Box IV. Thus x and qi are the two
topmost elements after Q is updated, and we need only show that P[q,, x] is
a pocket. Let u be the input vertex just before x. By the Fact stated above,
P[q,, qj] lies to the right of the path L[qiwl, qi]o L[q,, qi+J. It then follows
from Lemma 2.2 and the way Box III works that P[q,, u] must lie to the
right of the path L[qi-l, qi] 0 L[q,, qi+J, and hence also to the right of the
path L[qiel, qi]o L[q,, x]. In particular, this implies that P[q,, u] lies to the
right of L[q,, x], proving that P[q,, x] is a pocket. This establishes induc-
tion hypothesis (H2). q

LEMMA 4.2. When the algorithm terminates, (H2) is true for i = t + 1;
that is, P[q,, qO] also forms a pocket.

Prooj: If termination occurs in Box II, then this is trivially true since
P[q,, qO] = L[q,, q,,]. The other possibilities are to terminate while execut-
ing the DO loop in either Box I or Box III, where the latter case can happen
only if, because of Lemma 2.2, one has entered Box III with (y, ri, x) > 0.
For either one of these possibilities, the property “x lies to the right of
Z.,[q,, q,,]” will be true for all the input vertices x seen after ql. Tltis shows
that P[q,, q,-J is a pocket. 0

Algorithm LeftHull uses linear space and linear time, since each input point
can be pushed onto or popped from the stack at most once, if it is not
rejected outright. This completes the proof of our main theorem. 0

5. CONCLUSIONS

We present a simple linear-time algorithm for finding the convex hull of a
simple polygon. Note that our algorithm can actually be applied to nonsim-
ple polygons P as follows: First, at each point p of intersection of two (or
more) edges of P, place a new vertex u(p). Viewed as a graph G(P), all
vertices (old and new) have even degrees, so that the graph G(P) is
Eulerian. Choose a fixed Eulerian circuit in G(P). It is not difficult to see
that each new vertex v(p) of degree 2d(p) may now be split into d(p)
slightly perturbed vertices t+(P), 1 & i < d(P), of degree 2 so that each
q(P) is in the interior of H(P) and the resulting polygon P* (= Eulerian
circuit) is simple. Therefore H(P*) = H(P) and our algorithm can be used

CONVEX HULL OF A SIMPLE POLYGON 331

to compute H(P*). Observe, however, that if P has n vertices, P* can have
0(n*) vertices.

In the case that P is a simple path with n vertices, we can join the first
and last points of P creating a new edge to form a (possibly nonsimple)
polygon E By applying the preceding transformation we can then find a
simple polygon F* on at most 3n vertices with H(F*) = H(F) = H(P) in
time O(n).

ACKNOWLEDGMENTS

We are grateful to Joseph G’Rourke and Godftied Toussaint whose careful reading of an
earlier draft uncovered an error in our paper. We should also point out that our algorithm is
similar in spirit to an unpublished algorithm independently discovered by D. T. Lee.

REFERENCES

1. A. BYKAT, Convex hull of a finite set of points in two dimensions, h~orm. Process. L&r. 7
(1978), 296-298.

2. R. L. GRAHAM, An efficient algorithm for dete rmining the convex hull of a planar set,
Inform. Process. Wt. 1 (1972), 132-133.

3. D. MCCALLUM and D. AVIS, A linear algorithm for finding the convex hull of a simple
polygon, Inform. Process. La. 9 (1979), 201-206.

4. M. SHAMOS, “Problems in Computational Geometry,” Doctoral dissertation, Computer
Science Department, Yale University, 1978.

5. J. SKLANSKY, Measuring concavity on a rectangular mosaic, IEEE Tram. C&put., 21
(1972), 1355-1364.

6. G. TOUSSAINT, S. AKL, and L. DEVROYE, “Efficient Convex Hull Algorithms for Points in
Two and More Dimensions,” Technical Report No. 78.5, McGill University, 1978.

7. A. YAO, A lower bound for finding convex hulls, J. Assoc. Comput. Mach., 28 (1981),
780-787.

